skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlled microparticle separation using whispering gallery mode forces
There is a wide variety of applications that require sorting and separation of micro- particles from a large cluster of similar objects. Existing methods can distinguish micro-particles by their bulk properties, such as their size, density, and electric polarizability. These methods, however, are not selective with respect to the individual geometry of the particles. In this work, we focus on the use of a resonance effect between a microparticle and an evanescent light field known as the Whispering Gallery Mode (WGM) force. The WGM force is highly sensitive to the radius of the particle and is both controllable and tunable. In this paper, we explore through simulation the design of a WGM-based device for micro-particle separation. In this device, particles flow in through an inlet and are carried over two actuation regions given by waveguides carrying laser light to generate the evanescent field. Particles are observed by a camera, allowing for feedback control on the power of the lasers. While the basic control structure is simple, there are several challenges, including unknown disturbances to the fluid flow, limited laser power, and uni-directional control over each actuation region. We combine Expectation Maximization with Kalman filtering to both estimate the unknown disturbance and filter the measurements into a position estimate. We then develop simple hybrid controllers and compare them to the ideal setting (without any constraints) based on a Linear–Quadratic–Gaussian (LQG) control approach.  more » « less
Award ID(s):
1661586
PAR ID:
10186976
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IFAC World Congress
ISSN:
2405-8963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the use of resonant amplification of light propelling forces for selective separation of fluid-suspended dielectric microparticles. The force amplification and the selectivity of the method is achieved using the whispering gallery mode resonances of the microparticles. The selectivity is determined by the inverse of the quality factor (Q) of the resonances in liquid (with Q ∼ 10^4 -10^6). We demonstrate that the evanescent field around a tapered optical fiber fed with ∼ 20 mW power from a 1064 nm laser can selectively move polystyrene microspheres of up to 20 μm in diameter through distances of more than 50 μm, thereby establishing that the technique is sufficient for efficient separation. 
    more » « less
  2. Nonlinear electrokinetic phenomena, where electrically driven fluid flows depend nonlinearly on the applied voltage, are commonly encountered in aqueous suspensions of colloidal particles. A prime example is the induced-charge electro-osmosis, driven by an electric field acting on diffuse charge induced near a polarizable surface. Nonlinear electrohydrodynamic flows also occur in non-polar fluids, driven by the electric field acting on space charge induced by conductivity gradients. Here, we analyse the flows about a charge-neutral spherical solid particle in an applied uniform electric field that arise from conductivity dependence on local field intensity. The flow pattern varies with particle conductivity: while the flow about a conducting particle has a quadrupolar pattern similar to induced-charge electro-osmosis, albeit with opposite direction, the flow about an insulating particle has a more complex structure. We find that this flow induces a force on a particle near an electrode that varies non-trivially with particle conductivity: while it is repulsive for perfectly insulating particles and particles more conductive than the suspending medium, there exists a range of particle conductivities where the force is attractive. The force decays as the inverse square of the distance to the electrode and thus can dominate the dielectrophoretic attraction due to the image dipole, which falls off with the fourth power with the distance. This electrohydrodynamic lift opens new possibilities for colloidal manipulation and driven assembly by electric fields. 
    more » « less
  3. null (Ed.)
    Magnetic particles confined in microchannels can be actuated to perform translation motion using a rotating magnetic field, but their actuation in such a situation is not yet well understood. Here, the actuation of a ferromagnetic particle confined in square microchannels is studied using immersed-boundary lattice Boltzmann simulations. In wide channels, when a sphere is positioned close to a side wall but away from channel corners, it experiences a modest hydrodynamic actuation force parallel to the channel walls. This force decreases as the sphere is shifted toward the bottom wall but the opposite trend is found when the channel is narrow. When the sphere is positioned midway between the top and bottom channel walls, the actuation force decreases as the channel width decreases and can reverse its direction. These phenomena are elucidated by studying the flow and pressure fields in the channel-particle system and by analyzing the viscous and pressure components of the hydrodynamic force acting on different parts of the sphere. 
    more » « less
  4. null (Ed.)
    We investigate algorithmic approaches for targeted drug delivery in a complex, maze-like environment, such as a vascular system. The basic scenario is given by a large swarm of micro-scale particles ("agents") and a particular target region ("tumor") within a system of passageways. Agents are too small to contain on-board power or computation and are instead controlled by a global external force that acts uniformly on all particles, such as an applied fluidic flow or electromagnetic field. The challenge is to deliver all agents to the target region with a minimum number of actuation steps. We provide a number of results for this challenge. We show that the underlying problem is NP-hard, which explains why previous work did not provide provably efficient algorithms. We also develop a number of algorithmic approaches that greatly improve the worst-case guarantees for the number of required actuation steps. We evaluate our algorithmic approaches by a number of simulations, both for deterministic algorithms and searches supported by deep learning, which show that the performance is practically promising. 
    more » « less
  5. Abstract Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, the counterpart of metals, has been used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications. 
    more » « less