skip to main content


Title: Network-Supported, Metal-Mediated Catalysis: Progress and Perspective
Metal-mediated chemical reactions have been a vital area of research for over a century. Recently, there has been increasing effort to improve the performance of metal-mediated catalysis by optimizing the structure and chemical environment of active catalytic species towards process intensification and sustainability. Network-supported catalysts use a solid (rigid or flexible) support with embedded metal catalysts, ideally allowing for efficient precursor access to the catalytic sites and simultaneously not requiring a catalyst separation step following the reaction with minimal catalyst leaching. This minireview focuses on recent developments of network-supported catalysts to improve the performance of a wide range of metal-mediated catalytic reactions. We discuss in detail the different strategies to realize the combined benefits of homogeneous and heterogeneous catalysis in a metal catalyst support. We outline the unique versatility, tunability, properties, and activity of such hybrid catalysts in batch and continuous flow configurations. Furthermore, we present potential future directions to address some of the challenges and shortcomings of current flexible network-supported catalysts.  more » « less
Award ID(s):
1803428
NSF-PAR ID:
10187219
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Reaction Chemistry & Engineering
ISSN:
2058-9883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Molecular design ultimately furnishes improvements in performance over time, and this has been the case for Rh‐ and Ir‐based molecular catalysts currently used in transfer hydrogenation (TH) reactions for fine chemical synthesis. In this report, we describe a molecular pincer ligand Al catalyst for TH, (I2P2−)Al(THF)Cl (I2P=diiminopyridine; THF=tetrahydrofuran). The mechanism for TH is initiated by two successive Al‐ligand cooperative bond activations of the O−H bonds in two molecules of isopropanol (iPrOH) to afford six‐coordinate (H2I2P)Al(OiPr)2Cl. Stoichiometric chemical reactions and kinetic experiments suggest an ordered transition state, supported by polar solvents, for concerted hydride transfer fromiPrOto substrate. Metal‐ligand cooperative hydrogen bonding in a cyclic transition state is a likely support for the concerted hydride transfer event. The available data does not support involvement of an intermediate Al‐hydride in the TH. Proof‐of‐principle reactions including the conversion of isopropanol and benzophenone to acetone and diphenylmethanol with 90 % conversion in 1 h are described. The analogous hydride compound, (I2P2−)Al(THF)H, also cleaves the O−H bond iniPrOH to afford (HI2P)Al(OiPr)H and (HI2P)Al(OiPr)2, but no activity for catalytic TH was observed.

     
    more » « less
  2. Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10. 
    more » « less
  3. In this review, we present an assessment of recent advances in alkyne functionalization reactions, classified according to different classes of recyclable catalysts. In this work, we have incorporated and reviewed the activity and selectivity of recyclable catalytic systems such as polysiloxane-encapsulated novel metal nanoparticle-based catalysts, silica–copper-supported nanocatalysts, graphitic carbon-supported nanocatalysts, metal organic framework (MOF) catalysts, porous organic framework (POP) catalysts, bio-material-supported catalysts, and metal/solvent free recyclable catalysts. In addition, several alkyne functionalization reactions have been elucidated to demonstrate the success and efficiency of recyclable catalysts. In addition, this review also provides the fundamental knowledge required for utilization of green catalysts, which can combine the advantageous features of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis. 
    more » « less
  4. Although noble metal nanocatalysts show superior performance to conventional catalysts, they can be problematic when balancing catalytic efficiency and reusability. In order to address this dilemma, we developed a smart paper transformer (s-PAT) to support nanocatalysts, based on easy phase conversion between paper and pulp, for the first time. The pulp phase was used to maintain the high catalytic efficiency of the nanocatalysts and the transformation to paper enabled their high reusability. Herein, as an example of smart paper transformers, a novel chromatography paper-supported Au nanosponge (AuNS/pulp) catalyst was developed through a simple water-based preparation process for the successful reduction of p -nitrophenol to demonstrate the high catalytic efficiency and reusability of the noble metal nanocatalyst/pulp system. The composition, structure, and morphology of the AuNS/pulp catalyst were characterized by XRD, TGA, FE-SEM, ICP, TEM, FT-IR, and XPS. The AuNS/pulp catalyst was transformed into the pulp phase during the catalytic reaction and into the paper phase to recover the catalysts after use. Owing to this smart switching of physical morphology, the AuNS/pulp catalyst was dispersed more evenly in the solution. Therefore, it exhibited excellent catalytic performance for p -nitrophenol reduction. Under optimal conditions, the conversion rate of p -nitrophenol reached nearly 100% within 6 min and the k value of AuNS/pulp (0.0106 s −1 ) was more than twice that of a traditional chromatography paper-based catalyst (0.0048 s −1 ). Additionally, it exhibited outstanding reusability and could maintain its high catalytic efficiency even after fifteen recycling runs. Accordingly, the unique phase switching of this smart paper transformer enables Au nanosponge to transform into a highly efficient and cost-effective multifunctional catalyst. The paper transformer can support various nanocatalysts for a wide range of applications, thus providing a new insight into maintaining both high catalytic efficiency and reusability of nanocatalysts in the fields of environmental catalysis and nanomaterials. 
    more » « less
  5. null (Ed.)
    Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon–carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SA BET = 350 m 2 g −1 ) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO 2 catalyst. A low CuPd/SiO 2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO 2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd 0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO 2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h −1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications. 
    more » « less