skip to main content


Title: Longitudinal associations between white matter maturation and cognitive development across early childhood
Abstract

From birth to 5 years of age, brain structure matures and evolves alongside emerging cognitive and behavioral abilities. In relating concurrent cognitive functioning and measures of brain structure, a major challenge that has impeded prior investigation of their time‐dynamic relationships is the sparse and irregular nature of most longitudinal neuroimaging data. We demonstrate how this problem can be addressed by applying functional concurrent regression models (FCRMs) to longitudinal cognitive and neuroimaging data. The application of FCRM in neuroimaging is illustrated with longitudinal neuroimaging and cognitive data acquired from a large cohort (n= 210) of healthy children, 2–48 months of age. Quantifying white matter myelination by using myelin water fraction (MWF) as imaging metric derived from MRI scans, application of this methodology reveals an early period (200–500 days) during which whole brain and regional white matter structure, as quantified by MWF, is positively associated with cognitive ability, while we found no such association for whole brain white matter volume. Adjusting for baseline covariates including socioeconomic status as measured by maternal education (SES‐ME), infant feeding practice, gender, and birth weight further reveals an increasing association between SES‐ME and cognitive development with child age. These results shed new light on the emerging patterns of brain and cognitive development, indicating that FCRM provides a useful tool for investigating these evolving relationships.

 
more » « less
Award ID(s):
1712864
NSF-PAR ID:
10460502
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Human Brain Mapping
Volume:
40
Issue:
14
ISSN:
1065-9471
Page Range / eLocation ID:
p. 4130-4145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prior research points to a positive concurrent relationship between reasoning ability and both frontoparietal structural connectivity (SC) as measured by diffusion tensor imaging (Tamnes et al., 2010) and frontoparietal functional connectivity (FC) as measured by fMRI (Cocchi et al., 2014). Further, recent research demonstrates a link between reasoning ability and FC of two brain regions in particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobe (IPL) (Wendelken et al., 2016). Here, we sought to investigate the concurrent and dynamic, lead-lag relationships among frontoparietal SC, FC, and reasoning ability in humans. To this end, we combined three longitudinal developmental datasets with behavioral and neuroimaging data from 523 male and female participants between 6 and 22 years of age. Cross-sectionally, reasoning ability was most strongly related to FC between RLPFC and IPL in adolescents and adults, but to frontoparietal SC in children. Longitudinal analysis revealed that RLPFC-IPL SC, but not FC, was a positive predictor of future changes in reasoning ability. Moreover, we found that RLPFC-IPL SC at one time point positively predicted future changes in RLPFC-IPL FC, whereas, in contrast, FC did not predict future changes in SC. Our results demonstrate the importance of strong white matter connectivity between RLPFC and IPL during middle childhood for the subsequent development of both robust FC and good reasoning ability.SIGNIFICANCE STATEMENT The human capacity for reasoning develops substantially during childhood and has a profound impact on achievement in school and in cognitively challenging careers. Reasoning ability depends on communication between lateral prefrontal and parietal cortices. Therefore, to understand how this capacity develops, we examined the dynamic relationships over time among white matter tracts connecting frontoparietal cortices (i.e., structural connectivity, SC), coordinated frontoparietal activation (functional connectivity, FC), and reasoning ability in a large longitudinal sample of subjects 6-22 years of age. We found that greater frontoparietal SC in childhood predicts future increases in both FC and reasoning ability, demonstrating the importance of white matter development during childhood for subsequent brain and cognitive functioning. 
    more » « less
  2. Abstract Objective

    Common obesity‐associated genetic variants at the fat mass and obesity‐associated (FTO) locus have been associated with appetitive behaviors and altered structure and function of frontostriatal brain regions. The authors aimed to investigate the influence ofFTOvariation on frontostriatal appetite circuits in early life.

    Methods

    Data were drawn from RESONANCE, a longitudinal study of early brain development. Growth trajectories of nucleus accumbens and frontal lobe volumes, as well as total gray matter and white matter volume, by risk allele (AA) carrier status onFTOsingle‐nucleotide polymorphism rs9939609 were examined in 228 children (102 female, 126 male) using magnetic resonance imaging assessments obtained from infancy through middle childhood. The authors fit functional concurrent regression models with brain volume outcomes over age as functional responses, andFTOgenotype, sex, BMIzscore, and maternal education were included as predictors.

    Results

    Bootstrap pointwise 95% CI for regression coefficient functions in the functional concurrent regression models showed that the AA group versus the group with no risk allele (TT) had greater nucleus accumbens volume (adjusted for total brain volume) in the interval of 750 to 2250 days (2–6 years).

    Conclusions

    These findings suggest that common genetic risk for obesity is associated with differences in early development of brain reward circuitry and argue for investigating dynamic relationships among genotype, brain, behavior, and weight throughout development.

     
    more » « less
  3. Abstract The maturation of regional brain volumes from birth to preadolescence is a critical developmental process that underlies emerging brain structural connectivity and function. Regulated by genes and environment, the coordinated growth of different brain regions plays an important role in cognitive development. Current knowledge about structural network evolution is limited, partly due to the sparse and irregular nature of most longitudinal neuroimaging data. In particular, it is unknown how factors such as mother’s education or sex of the child impact the structural network evolution. To address this issue, we propose a method to construct evolving structural networks and study how the evolving connections among brain regions as reflected at the network level are related to maternal education and biological sex of the child and also how they are associated with cognitive development. Our methodology is based on applying local Fréchet regression to longitudinal neuroimaging data acquired from the RESONANCE cohort, a cohort of healthy children (245 females and 309 males) ranging in age from 9 weeks to 10 years. Our findings reveal that sustained highly coordinated volume growth across brain regions is associated with lower maternal education and lower cognitive development. This suggests that higher neurocognitive performance levels in children are associated with increased variability of regional growth patterns as children age. 
    more » « less
  4. Abstract

    White matter (WM) microstructure, as determined by diffusion tensor imaging (DTI), is increasingly recognized as an important determinant of cognitive function and is also altered in neuropsychiatric disorders. Little is known about genetic and environmental influences on WM microstructure, especially in early childhood, an important period for cognitive development and risk for psychiatric disorders. We studied the heritability of DTI parameters, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) along 34 tracts, including 10 bilateral fiber pathways and the respective subdivision, using quantitative tractography in a longitudinal sample of healthy children at 1 year (N = 215) and 2 years (N = 165) of age. We found that heritabilities for whole brain AD, RD, and FA were 0.48, 0.69, and 0.72 at age 1, and 0.59, 0.77, and 0.76 at age 2 and that mean heritabilities of tract‐averaged AD, RD, and FA for individual bundles were moderate (over 0.4). However, the heritability of DTI change between 1 and 2 years of age was not significant for most tracts. We also demonstrated that point‐wise heritability tended to be significant in the central portions of the tracts and was generally spatially consistent at ages 1 and 2 years. These results, especially when compared to heritability patterns in neonates, indicate that the heritability of WM microstructure is dynamic in early childhood and likely reflect heterogeneous maturation of WM tracts and differential genetic and environmental influences on maturation patterns.

     
    more » « less
  5. Abstract

    The importance of (inherited) genetic impact in reading development is well established.De novomutation is another important contributor that is recently gathering interest as a major liability of neurodevelopmental disorders, but has been neglected in reading research to date. Paternal age at childbirth (PatAGE) is known as the most prominent risk factor forde novomutation, which has been repeatedly shown by molecular genetic studies. As one of the first efforts, we performed a preliminary investigation of the relationship between PatAGE, offspring's reading, and brain structure in a longitudinal neuroimaging study following 51 children from kindergarten through third grade. The results showed that greater PatAGE was significantly associated with worse reading, explaining an additional 9.5% of the variance after controlling for a number of confounds—including familial factors and cognitive‐linguistic reading precursors. Moreover, this effect was mediated by volumetric maturation of the left posterior thalamus from ages 5 to 8. Complementary analyses indicated the PatAGE‐related thalamic region was most likely located in the pulvinar nuclei and related to the dorsal attention network by using brain atlases, public datasets, and offspring's diffusion imaging data. Altogether, these findings provide novel insights into neurocognitive mechanisms underlying the PatAGE effect on reading acquisition during its earliest phase and suggest promising areas of future research.

     
    more » « less