skip to main content


Title: Learning I/O Access Patterns to Improve Prefetching in SSDs
Abstract. Flash based solid state drives (SSDs) have established them- selves as a higher-performance alternative to hard disk drives in cloud and mobile environments. Nevertheless, SSDs remain a performance bot- tleneck of computer systems due to their high I/O access latency. A com- mon approach for improving the access latency is prefetching. Prefetch- ing predicts future block accesses and preloads them into main memory ahead of time. In this paper, we discuss the challenges of prefetching in SSDs, explain why prior approaches fail to achieve high accuracy, and present a neural network based prefetching approach that signi cantly outperforms the state-of the-art. To achieve high performance, we ad- dress the challenges of prefetching in very large sparse address spaces, as well as prefetching in a timely manner by predicting ahead of time. We collect I/O trace les from several real-world applications running on cloud servers and show that our proposed approach consistently outper- forms the existing stride prefetchers by up to 800 and prior prefetching approaches based on Markov chains by up to 8. Furthermore, we pro- pose an address mapping learning technique to demonstrate the applica- bility of our approach to previously unseen SSD workloads and perform a hyperparameter sensitivity study.  more » « less
Award ID(s):
1823559
NSF-PAR ID:
10187652
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICML-PKDD
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using flash-based solid state drives (SSDs) as main memory has been proposed as a practical solution towards scaling memory capacity for data-intensive applications. However, almost all existing approaches rely on the paging mechanism to move data between SSDs and host DRAM. This inevitably incurs significant performance overhead and extra I/O traffic. Thanks to the byte-addressability supported by the PCIe interconnect and the internal memory in SSD controllers, it is feasible to access SSDs in both byte and block granularity today. Exploiting the benefits of SSD's byte-accessibility in today's memory-storage hierarchy is, however, challenging as it lacks systems support and abstractions for programs. In this paper, we present FlatFlash, an optimized unified memory-storage hierarchy, to efficiently use byte-addressable SSD as part of the main memory. We extend the virtual memory management to provide a unified memory interface so that programs can access data across SSD and DRAM in byte granularity seamlessly. We propose a lightweight, adaptive page promotion mechanism between SSD and DRAM to gain benefits from both the byte-addressable large SSD and fast DRAM concurrently and transparently, while avoiding unnecessary page movements. Furthermore, we propose an abstraction of byte-granular data persistence to exploit the persistence nature of SSDs, upon which we rethink the design primitives of crash consistency of several representative software systems that require data persistence, such as file systems and databases. Our evaluation with a variety of applications demonstrates that, compared to the current unified memory-storage systems, FlatFlash improves the performance for memory-intensive applications by up to 2.3x, reduces the tail latency for latency-critical applications by up to 2.8x, scales the throughput for transactional database by up to 3.0x, and decreases the meta-data persistence overhead for file systems by up to 18.9x. FlatFlash also improves the cost-effectiveness by up to 3.8x compared to DRAM-only systems, while enhancing the SSD lifetime significantly. 
    more » « less
  2. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×. 
    more » « less
  3. Applications and middleware services, such as data placement engines, I/O scheduling, and prefetching engines, require low-latency access to telemetry data in order to make optimal decisions. However, typical monitoring services store their telemetry data in a database in order to allow applications to query them, resulting in significant latency penalties. This work presents Apollo: a low-latency monitoring service that aims to provide applications and middleware libraries with direct access to relational telemetry data. Monitoring the system can create interference and overhead, slowing down raw performance of the resources for the job. However, having a current view of the system can aid middleware services in making more optimal decisions which can ultimately improve the overall performance. Apollo has been designed from the ground up to provide low latency, using Publish–Subscribe (Pub-Sub) semantics, and low overhead, using adaptive intervals in order to change the length of time between polling the resource for telemetry data and machine learning in order to predict changes to the telemetry data between actual resource polling. This work also provides some high level abstractions called I/O curators, which can further aid middleware libraries and applications to make optimal decisions. Evaluations showcase that Apollo can achieve sub-millisecond latency for acquiring complex insights with a memory overhead of ~57MB and CPU overhead being only 7% more than existing state-of-the-art systems. 
    more » « less
  4. In parallel with big data processing and analysis dominating the usage of distributed and Cloud infrastructures, the demand for distributed metadata access and transfer has increased. The volume of data generated by many application domains exceeds petabytes, while the corresponding metadata amounts to terabytes or even more. This paper proposes a novel solution for efficient and scalable metadata access for distributed applications across wide-area networks, dubbed SMURF. Our solution combines novel pipelining and concurrent transfer mechanisms with reliability, provides distributed continuum caching and semantic locality-aware prefetching strategies to sidestep fetching latency, and achieves scalable and high-performance metadata fetch/prefetch services in the Cloud. We incorporate the phenomenon of semantic locality awareness for increased prefetch prediction rate using real-life application I/O traces from Yahoo! Hadoop audit logs and propose a novel prefetch predictor. By effectively caching and prefetching metadata based on the access patterns, our continuum caching and prefetching mechanism significantly improves the local cache hit rate and reduces the average fetching latency. We replay approximately 20 Million metadata access operations from real audit traces, where SMURF achieves 90% accuracy during prefetch prediction and reduced the average fetch latency by 50% compared to the state-of-the-art mechanisms. 
    more » « less
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less