skip to main content

Title: Unexpected conformational behavior of poly(poly(ethylene glycol) methacrylate)-poly(propylene carbonate)-poly(poly(ethylene glycol) methacrylate) (PPEGMA-PPC-PPEGMA) amphiphilic block copolymers in micellar solution and at the air-water interface
Authors:
; ; ;
Award ID(s):
1803968
Publication Date:
NSF-PAR ID:
10187789
Journal Name:
Journal of Colloid and Interface Science
Volume:
566
Issue:
C
Page Range or eLocation-ID:
304 to 315
ISSN:
0021-9797
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to Coulombic forces, X-ray active copolymer nanoparticles self-assembled into crystalline colloidal arrays which were stabilized through encapsulation in hydrogels. The system was able to emit blue light when pumped with an X-ray source.
  2. This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper( i )-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN) 6 ] 3− and [Fe(CN)6] 4− , moderate CAs PF 6 − and ClO 4 − , weak CA I − , and for comparison, kosmotropic anion SO 4 2− . At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderatemore »CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I − and SO 4 2− had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release.« less
  3. A self-assembled co-hydrogel system with sol-gel two-phase coexistence and mucoadhesive properties was developed based on the combined properties of fluoroalkyl double-ended poly(ethylene glycol) (Rf-PEG-Rf) and poly(acrylic acid) (PAA), respectively. We have synthesized an Rf-PEG-g-PAA (where g denotes grafted) copolymer and integrated it into the Rf-PEG-Rf physically cross-linked micellar network to form a co-hydrogel system. Tensile strengths between the co-hydrogel surfaces and two different sets of mucosal surfaces were acquired. One mucosal surface was made of porcine stomach mucin Type II, while the other one is a pig small intestine. The experimental results show that the largest maximum detachment stresses (MDSs) were obtained when the Rf-PEG-g-PAA’s weight percent in the dehydrated polymer mixture is ~15%. Tensile experiments also found that MDSs are greater in acidic conditions (pH = 4–5) (123.3 g/cm2 for the artificial mucus, and 43.0 g/cm2 for pig small intestine) and basic conditions (pH = 10.6) (126.9 g/cm2, and 44.6 g.cm2, respectively) than in neutral pH (45.4 g/cm2, and 30.7 g.cm2, respectively). Results of the rheological analyses using shear strain amplitude sweep and frequency sweep reveal that the Rf-PEG-g-PAA was physically integrated into the Rf-PEG-Rf micellar network, and the co-hydrogels remain physically cross-linked in three-dimensional micellar networks with long-termmore »physical dispersion stability. Therefore, the co-hydrogel system is promising for drug delivery applications on mucosal surfaces.« less