skip to main content


Title: Experimental investigation of a line plume in a filling box
A series of experiments were conducted to quantify the dynamics of a filling box driven by a line plume that spans the full width of the enclosure. Three configurations were tested namely symmetric (centrally located plume), wall-bounded (plume attached to an end wall), and asymmetric. The front movement for the symmetric and wall-bounded configurations was well described by the standard filling box model. The front movement results indicate that the typical value of the entrainment coefficient (α) for an unconfined plume (α=0.16) could be used to accurately predict the front movement for both the centrally located plume and the wall-attached plume. This is in contrast to other studies that suggest that wall-bounded plumes have a significantly lower entrainment coefficient. The standard filling box model broke down for the asymmetric configuration. As the plume was closer to one wall than the other, the plume outflows that spread out and reflected off the end walls returned to the plume at different times. This created a pressure imbalance across the plume that caused the plume to bend sharply toward the nearest wall. Analysis of the plume outflow as a constant flux gravity current showed that the outflow velocity scaled on the cube root of the plume buoyancy flux per unit width f, a result confirmed by further experiments. This result was used to quantify the time at which the plume bends and the standard filling box model breaks down.  more » « less
Award ID(s):
1703548
NSF-PAR ID:
10187807
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environmental Fluid Mechanics
ISSN:
1567-7419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The operational time distribution (OTD) defines the time for bed‐load sediment spent in motion, which is needed to characterize the random nature of sediment transport. This study explores the influence of bed clusters and size gradation on OTD for non‐uniform bed‐loads. First, both static and mobile bed armouring experiments were conducted in laboratorial flumes to monitor the transport of mixed sand/gravel sediments. Only in the mobile armouring experiment did apparent bed clusters develop, because of stable feeding and a longer transport period. Second, a generalized subordinated advection (GSA) model was applied to quantify the observed dynamics of tracer particles. Results show that forthe static armour layer(without sediment feed), the best‐fit OTD assigns more weight to the large displacement of small particles, likely because of the size‐selective entrainment process. The capacity coefficient in the GSA model, which affects the width of the OTD, is space dependent only for small particles whose dynamics can be significantly affected by larger particles and whose distribution is more likely to be space dependent in a mixed sand and gravel system. However, the OTD forthe mobile armour layer(with sediment recirculation) exhibited longer tails for larger particles. This is because the trailing edge of larger particles is more resistant to erosion, and their leading front may not be easily trapped by self‐organized bed clusters. The strong interaction between particle–bed may cause the capacity coefficient to be space‐dependent for bed‐load transport along mobile armour layers. Therefore, the combined laboratory experiments and stochastic model analysis show that the OTD may be affected more by particle–bed interactions (such as clusters) than by particle–particle interactions (e.g. hiding and exposing), and that the GSA model can quantify mixed‐size sand/gravel transport along river beds within either static or mobile armour layers. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  2. Abstract Magnetic clouds (MCs) are most often fitted with flux rope models that are static and have symmetric magnetic field profiles. However, spacecraft measurements near 1 au show that MCs usually expand when propagating away from the Sun and that their magnetic field profiles are asymmetric. Both effects are expected to be related, since expansion has been shown to result in a shift of the peak of the magnetic field toward the front of the MC. In this study, we investigate the effects of expansion on the asymmetry of the total magnetic field strength profile of MCs. We restrict our study to the simplest events, i.e., those that are crossed close to the nose of the MC. From a list of 25 such “simple” events, we compare the fitting results of a specific expanding Lundquist model with those of a classical force-free circular cross-sectional static Lundquist model. We quantify the goodness of the fits by the χ 2 of the total magnetic field and identify three types of MCs: (i) those with little expansion, which are well fitted by both models; (ii) those with moderate expansion, which are well fitted by the expanding model, but not by the static model; and (iii) those with expansion, whose asymmetry of the magnetic field cannot be explained. We find that the assumption of self-similar expansion cannot explain the measured asymmetry in the magnetic field profiles of some of these magnetic ejecta (MEs). We discuss our results in terms of our understanding of the magnetic fields of the MEs and their evolution from the Sun to Earth. 
    more » « less
  3. ABSTRACT

    We present a new semi-analytical formalism for modelling metal absorption lines that emerge from a clumpy galactic environment, ALPACA. We predict the “down-the-barrel” (DTB) metal absorption line profiles and the equivalent width (EW) of absorption at different impact parameters (b) as a function of the clump properties, including clump kinematics, clump volume filling factor, clump number density profile, and clump ion column densities. With ALPACA, we jointly model the stacked DTB C ii λ1334 spectrum of a sample of z ∼ 3 Lyman break galaxies and the EW versus b profile of a sample of z ∼ 2 star-forming galaxy–galaxy pairs. ALPACA successfully reproduced two data sets simultaneously, and the best fit prefers a low clump volume filling factor (∼3 × 10−3). The radial velocities of the clumps are a superposition of a rapidly accelerated outflow with a maximum velocity of $\sim 400 \, {\mathrm{km}\, \mathrm{s}^{-1}}$ and a velocity dispersion of $\sigma \sim 120 \, {\mathrm{km}\, \mathrm{s}^{-1}}$. The joint modelling reveals a physical scenario where the absorption observed at a particular velocity is contributed by the clumps distributed over a fairly broad range of radii. We also find that the commonly adopted Sobolev approximation is at best only applicable within a narrow range of radii where the clumps are undergoing rapid acceleration in a non-volume-filling clumpy medium. Lastly, we find that the clump radial velocity profile may not be fully constrained by the joint modelling and spatially resolved Ly α emission modelling may help break the degeneracy.

     
    more » « less
  4. Abstract

    Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.

     
    more » « less
  5. ABSTRACT Feedback from accreting supermassive black holes (BHs), active galactic nuclei (AGNs), is now a cornerstone of galaxy formation models. In this work, we present radiation-hydrodynamic simulations of radiative AGN feedback using the novel arepo-rt code. A central BH emits radiation at a constant luminosity and drives an outflow via radiation pressure on dust grains. Utilizing an isolated Navarro–Frenk–White (NFW) halo we validate our set-up in the single- and multiscattering regimes, with the simulated shock front propagation in excellent agreement with the expected analytic result. For a spherically symmetric NFW halo, an examination of the simulated outflow properties with radiation collimation demonstrates a decreasing mass outflow rate and momentum flux, but increasing kinetic power and outflow velocity with decreasing opening angle. We then explore the impact of a central disc galaxy and the assumed dust model on the outflow properties. The contraction of the halo during the galaxy’s formation and modelling the production of dust grains result in a factor 100 increase in the halo’s optical depth. Radiation then couples momentum more efficiently to the gas, driving a stronger shock and producing a mass-loaded $\sim \!10^{3}\, \mathrm{M}_{\odot }\, \mathrm{yr}^{-1}$ outflow with a velocity of $\sim \!2000\, \mathrm{km}\, \mathrm{s}^{-1}$. However, the inclusion of dust destruction mechanisms, like thermal sputtering, leads to the rapid destruction of dust grains within the outflow, reducing its properties below the initial NFW halo. We conclude that radiative AGN feedback can drive outflows, but a thorough numerical and physical treatment is required to assess its true impact. 
    more » « less