skip to main content


Title: Thermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture
There has been a growing interest in solution-phase routes to thermoelectric materials due to the decreased costs and novel device architectures that these methods enable. Many excellent thermoelectric materials are metal chalcogenide semiconductors and the ability to create soluble metal chalcogenide semiconductor precursors using thiol–amine solvent mixtures was recently demonstrated by others. In this paper, we report the first thermoelectric property measurements on metal chalcogenide thin films made in this manner. We create Cu 2−x Se y S 1−y and Ag-doped Cu 2−x Se y S 1−y thin films and study the interrelationship between their composition and room temperature thermoelectric properties. We find that the precursor annealing temperature affects the metal : chalcogen ratio, and leads to charge carrier concentration changes that affect the Seebeck coefficient and electrical conductivity. Increasing the Se : S ratio increases electrical conductivity and decreases the Seebeck coefficient. We also find that incorporating Ag into the Cu 2−x Se y S 1−y film leads to appreciable improvements in thermoelectric performance by increasing the Seebeck coefficient and decreasing thermal conductivity. Overall, we find that the room temperature thermoelectric properties of these solution-processed materials are comparable to measurements on Cu 2−x Se alloys made via conventional thermoelectric material processing methods. Achieving parity between solution-phase processing and conventional processing is an important milestone and demonstrates the promise of this binary solvent approach as a solution-phase route to thermoelectric materials.  more » « less
Award ID(s):
1506829
NSF-PAR ID:
10188015
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
6
Issue:
102
ISSN:
2046-2069
Page Range / eLocation ID:
99905 to 99913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past decade, Ag 2 Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi–Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag 2 Se, recent research has focused on fabricating nanosized Ag 2 Se. However, synthesizing Ag 2 Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag 2 Se thin films from Cu 2−x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu 2−x Se thin films by the thiol-amine dissolution of bulk Cu 2 Se, followed by soaking Cu 2−x Se films in AgNO 3 solution and annealing to form Ag 2 Se. We report an average power factor (PF) of 617 ± 82 μW m −1 K −2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m −1 K −2 and a ZT value of 0.46 at room temperature for our best-performing Ag 2 Se thin-film after soaking for 5 minutes. These high PFs have been achieved via full solution processing without hot-pressing. 
    more » « less
  2. null (Ed.)
    Copper-antimony-sulfide compounds have desirable earth-abundant compositions for application in renewable energy technologies, such as solar energy and waste heat recycling. These compounds can be synthesized by bottom-up, solution-phase techniques that are more energy and time efficient than conventional solid-state methods. Solution-phase methods typically produce nanostructured materials, which adds another dimension to control optical, electrical, and thermal material properties. This study focuses on a modified-polyol, solution-phase synthesis for tetrahedrite (Cu 12 Sb 4 S 13 ), a promising thermoelectric material with potential also for photovoltaic applications. To dope the tetrahedrite and tune material properties, the utility of the modified polyol synthetic approach has been demonstrated as a strategy to produce phase-pure tetrahedrite that incorporates transition metal (Fe, Co, Ni, Zn, Ag) dopants for Cu, Te dopant for Sb, and Se for S. Six of these reported tetrahedrite compounds have not previously been made by solution-phase methods. For the bottom-up formation of the tetrahedrite nanomaterials, the evolution of the chemical phases has been determined by an investigation of the reaction progress as a function of temperature and time. Digenite (Cu 1.8 S), covellite (CuS), and famatinite (Cu 3 SbS 4 ) are identified as key intermediates and are consistently observed for both undoped and doped tetrahedrites. The effect of nanostructuring and doping tetrahedrite on thermal properties has been investigated. It was found that nanostructured undoped tetrahedrite has reduced thermal stability relative to samples made by solid-state methods, while the addition of dopants for Cu increased the thermal stability of the material. Crystallinity, composition, and nanostructure of products and intermediates were characterized by powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analysis. This synthetic study with thermal property analysis demonstrates the potential of the modified polyol method to produce tetrahedrite and other copper-antimony-sulfide compounds for thermoelectric and photovoltaic applications. 
    more » « less
  3. Topological surface states (TSSs) coexist with a rapidly formed two-dimensional electron gas (2DEG) at the surface of Bi 2 Se 3 . While this complex band structure has been widely studied for its interactions between the two states in terms of electrical conductivity and carrier density, the resulting thermopower has not been investigated as thoroughly. Here, we report measurements of the temperature dependent Seebeck coefficient ( S) and electrical conductivity ( σ) on an undoped 10 nm thin Bi 2 Se 3 film over the temperature range of 100–300 K to find an overall metal-like behavior. The measured S is consistent with the theory when assuming that both the TSS and the 2DEG contribute to thermoelectric transport. Our analysis further shows that the coefficient corresponds to a Fermi level situated well above the conduction band minima of the 2DEG, resulting in comparable contributions from the TSS and the 2DEG. The thermoelectric power factor ( S 2 σ) at 300 K increases by 10%–30% over the bulk. This work provides insights into understanding and enhancing thermoelectric phenomena in topological insulators. 
    more » « less
  4. The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach. 
    more » « less
  5. null (Ed.)
    FeAs 2−x Se x ( x = 0.30–1.0) samples were synthesized as phase pure powders by conventional solid-state techniques and as single crystals ( x = 0.50) from chemical vapor transport. The composition of the crystals was determined to be Fe 1.025(3) As 1.55(3) Se 0.42(3) , crystallizing in the marcasite structure type, Pnnm space group. FeAs 2−x Se x (0 < x < 1) was found to undergo a marcasite-to-arsenopyrite ( P 2 1 / c space group) structural phase transition at x ∼ 0.65. The structures are similar, with the marcasite structure best described as a solid solution of As/Se, whereas the arsenopyrite has ordered anion sites. Magnetic susceptibility and thermoelectric property measurements from 300–2 K were performed on single crystals, FeAs 1.50 Se 0.50 . Paramagnetic behavior is observed from 300 to 17 K and a Seebeck coefficient of −33 μV K −1 , an electrical resistivity of 4.07 mΩ cm, and a very low κ l of 0.22 W m −1 K −1 at 300 K are observed. In order to determine the impact of the structural transition on the high-temperature thermoelectric properties, polycrystalline FeAs 2−x Se x ( x = 0.30, 0.75, 0.85, 1.0) samples were consolidated into dense pellets for measurements of thermoelectric properties. The x = 0.85 sample shows the best thermoelectric performance. The electronic structure of FeAsSe was calculated with DFT and transport properties were approximately modeled above 500 K. 
    more » « less