skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extensible High Force Manipulator For Complex Exploration
The development of compliant robotic manipulators which can show length change, compliance and dexterity could assist many challenging applications. Potential applications range from dexterous manipulation, robotic surgery or exploration of challenging environments. Despite significant developments in both fabrication and control approaches for continuum body manipulators, there have been few demonstrations of continuum body systems which display all these properties. We present a method for fabricating a continuum manipulation which shows extension, high force movements and a range of dexterous position. This approach uses 3D printing to create a flexible rack and pinion system. These high torque mechanisms are mounted at points along the 3D printed tracks to allow complex shape control of the continuum system. A controller has been also been developed based on a Piecewise Constant Curvature approximation to allow the position of the tip of the manipulator to be controlled, and motion paths to be followed. In this work, we show the force capabilities of this manipulator and demonstrate how multiple segments can be created for more complex movements.  more » « less
Award ID(s):
1830901
PAR ID:
10188462
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Soft Robotics (RoboSoft)
Page Range / eLocation ID:
733 to 739
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies. 
    more » « less
  2. null (Ed.)
    Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies. 
    more » « less
  3. null (Ed.)
    Traditional parallel-jaw grippers are insufficient for delicate object manipulation due to their stiffness and lack of dexterity. Other dexterous robotic hands often have bulky fingers, rely on complex time-varying cable drives, or are prohibitively expensive. In this paper, we introduce a novel low-cost compliant gripper with two centimeter-scaled 3-DOF delta robots using off-the-shelf linear actuators and 3D-printed soft materials. To model the kinematics of delta robots with soft compliant links, which diverge from typical rigid links, we train neural networks using a perception system. Furthermore, we analyze the delta robot’s force profile by varying the starting position in its workspace and measuring the resulting force from a push action. Finally, we demonstrate the compliance and dexterity of our gripper through six dexterous manipulation tasks involving small and delicate objects. Thus, we present the groundwork for creating modular multi-fingered hands that can execute precise and low-inertia manipulations. 
    more » « less
  4. null (Ed.)
    Although general purpose robotic manipulators are becoming more capable at manipulating various objects, their ability to manipulate millimeter-scale objects are usually limited. On the other hand, ultrasonic levitation devices have been shown to levitate a large range of small objects, from polystyrene balls to living organisms. By controlling the acoustic force fields, ultrasonic levitation devices can compensate for robot manipulator positioning uncertainty and control the grasping force exerted on the target object. The material agnostic nature of acoustic levitation devices and their ability to dexterously manipulate millimeter-scale objects make them appealing as a grasping mode for general purpose robots. In this work, we present an ultrasonic, contact-less manipulation device that can be attached to or picked up by any general purpose robotic arm, enabling millimeter-scale manipulation with little to no modification to the robot itself. This device is capable of performing the very first phase-controlled picking action on acoustically reflective surfaces. With the manipulator placed around the target object, the manipulator can grasp objects smaller in size than the robot's positioning uncertainty, trap the object to resist air currents during robot movement, and dexterously hold a small and fragile object, like a flower bud. Due to the contact-less nature of the ultrasound-based gripper, a camera positioned to look into the cylinder can inspect the object without occlusion, facilitating accurate visual feature extraction. 
    more » « less
  5. We report on the design and the modeling of a three-dimensional (3D) printed flexure-based actuation mechanism for robotic microtweezers, the main body of which is a single piece of nylon. Our design aims to fill a void in sample manipulation between two classes of widely used instruments: nano-scale and macro-scale robotic manipulators. The key component is a uniquely designed cam flexure system, which linearly translates the bending of a piezoelectric bimorph actuator into angular displacement. The 3D printing made it possible to realize the fabrication of the cam with a specifically calculated curve, which would otherwise be costly using conventional milling techniques. We first characterized 3D printed nylon by studying sets of simple cantilevers, which provided fundamental characteristics that could be used for further designs. The finite element method analysis based on the obtained material data matched well with the experimental data. The tweezers showed angular displacement from 0° to 10° linearly to the deflection of the piezo actuator (0–1.74 mm) with the linearity error of 0.1°. Resonant frequency of the system with/without working tweezer tips was discovered as 101 Hz and 127 Hz, respectively. Our design provides simple and low-cost construction of a versatile manipulator system for samples in the micro/meso-scale (0.1–1 mm). 
    more » « less