COVID‐19 greatly increased the online delivery of higher education. But one limitation of online learning is that students often struggle to stay engaged while watching online lectures. We examined whether including an instructor's face in lecture videos (instructor visibility) enhances student engagement or learning. In two preregistered experiments, we found that instructor visibility in lecture videos did not affect either engagement or learning overall. However, participants reported higher engagement when they watched a video that aligned with their preference for instructor visibility. For example, participants who favored videos with the instructor visible reported greater engagement with such videos compared to those without the instructor, and vice versa. Additionally, we examined the effects of playback speed on engagement and learning. Our results suggest that speeded playing did not impact engagement but resulted in better learning efficiency. Lastly, using GPT, we explored participants' open‐ended responses to understand their preference for video lectures.
more »
« less
YouTube resources for synthetic biology education
Abstract Online video resources have increasingly become a common way to effectively share scientific research ideas and engage viewers at many levels of interest or expertise. While synthetic biology is a comparatively young field, it has accumulated online videos across a spectrum of content and technical depth. Such video content can be used to introduce viewers to synthetic biology, supplement college course content, teach new lab skills and entertain. Here, we compile online videos concerning synthetic biology into public YouTube playlists tailored for six different, though potentially overlapping, audiences: those wanting an introduction to synthetic biology, those wanting to get quick overviews of specific topics within synthetic biology, those wanting teaching or public lectures, those wanting more technical research lectures, those wanting to learn lab protocols and those interested in the International Genetically Engineered Machine competition.
more »
« less
- Award ID(s):
- 1818248
- PAR ID:
- 10188517
- Date Published:
- Journal Name:
- Synthetic Biology
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2397-7000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Miesenberger K., Manduchi R. (Ed.)Automatic subtitles are widely used for subtitling television and online videos. Some include punctuation while others do not. Our study with 21 participants watching subtitled videos found that viewers reported that punctuation improves the “readability” experience for deaf, hard of hearing, and hearing viewers, regardless of whether it was generated via ASR or humans. Given that automatic subtitles have become widely integrated into online video and television programs, and that nearly 20% of television viewers in US or UK use subtitles, there is evidence that supports punctuation in subtitles has the potential to improve the viewing experience for a significant percentage of the all television viewers, including people who are deaf, hard of hearing, and hearing.more » « less
-
Collaborating scientists and storytellers successfully built a university-based science-in-action video storytelling model to test the research question: Can university scientists increase their relatability and public engagement through science-in-action video storytelling? Developed over 14 years, this science storytelling model produced more than a dozen high-visibility narratives that translated science to the public and featured scientists, primarily environmental and climate scientists, who are described in audience surveys as relatable people. This collaborative model, based on long-term trusting partnerships between scientists and video storytellers, documented scientists as they conducted their research and together created narratives intended to humanize scientists as authentic people on journeys of discovery. Unlike traditional documentary filmmaking or journalism, the participatory nature of this translational science model involved scientists in the shared making of narratives to ensure the accuracy of the story's science content. Twelve science and research video story products have reached broad audiences through a variety of venues including television and online streaming platforms such as Public Broadcasting Service (PBS), Netflix, PIVOT TV, iTunes, and Kanopy. With a reach of over 180 million potential public audience viewers, we have demonstrated the effectiveness of this model to produce science and environmental narratives that appeal to the public. Results from post-screening surveys with public, high school, and undergraduate audiences showed perceptions of scientists as relatable. Our data includes feedback from undergraduate and high school students who participated in the video storytelling processes and reported increased relatability to both scientists and science. In 2022, we surveyed undergraduate students using a method that differentiated scientists' potential relatable qualities with scientists' passion for their work, and the scientists' motivation to help others, consistently associated with relatability. The value of this model to scientists is offered throughout this paper as two of our authors are biological scientists who were featured in our original science-in-action videos. Additionally, this model provides a time-saving method for scientists to communicate their research. We propose that translational science stories created using this model may provide audiences with opportunities to vicariously experience scientists' day-to-day choices and challenges and thus may evoke audiences' ability to relate to, and trust in, science.more » « less
-
Hsu, Jeremy L (Ed.)ABSTRACT: In this era of information abundance and digital connectivity, educational videos are a transformative and widely used resource in STEM higher education. Much of what is known about the effective use of educational videos comes from analyzing videos used for content delivery and the impacts on knowledge gains or behavioral engagement with videos. Less is known about how videos may impact students’ affective learning experiences, feelings, and attitudes or how to effectively use videos in science education beyond just as a content-delivery tool. This study explored the impact of three distinct video styles: a whiteboard animation, a recorded discovery lecture by one of the discoverers, and a documentary short film featuring both discoverers in conversation on student outcomes in a large-enrollment undergraduate biology class. Students were randomized to watch one of these three formats, all covering the same scientific content (i.e., the Meselson and Stahl experiment), followed by a post-video survey. The documentary film, “The Most Beautiful Experiment,” which integrated interpersonal storytelling and informal dialog, had the most significant impact on outcomes related to affective learning, including science identity, attitudes about biology, speaker relatability, and emotional engagement. No significant differences in knowledge gains were observed across video styles. This study highlights the potential of personalized and embodied video formats to enrich STEM education and warrants further research into their broader applications.more » « less
-
Streaming video algorithms dynamically select between different versions of a video to deliver the highest quality version that can be viewed without buffering over the client’s connection. To improve the quality for viewers, the backing video service can generate more and/or better versions, but at a significant computational overhead. Processing all videos uploaded to Facebook in the most intensive way would require a prohibitively large cluster. Facebook’s video popularity distribution is highly skewed, however, with analysis on sampled videos showing 1% of them accounting for 83% of the total watch time by users. Thus, if we can predict the future popularity of videos, we can focus the intensive processing on those videos that improve the quality of the most watch time. To address this challenge, we designed CHESS, the first popularity prediction algorithm that is both scalable and accurate. CHESS is scalable because, unlike the state-ofthe- art approaches, it requires only constant space per video, enabling it to handle Facebook’s video workload. CHESS is accurate because it delivers superior predictions using a combination of historical access patterns with social signals in a unified online learning framework. We have built a video prediction service, CHESSVPS, using our new algorithm that can handle Facebook’s workload with only four machines. We find that re-encoding popular videos predicted by CHESSVPS enables a higher percentage of total user watch time to benefit from intensive encoding, with less overhead than a recent production heuristic, e.g., 80% of watch time with one-third as much overhead.more » « less
An official website of the United States government

