skip to main content


Title: Koopman Lyapunov‐based model predictive control of nonlinear chemical process systems
Abstract

In this work, we propose the integration of Koopman operator methodology with Lyapunov‐based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed‐loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed‐loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.

 
more » « less
Award ID(s):
1804407
NSF-PAR ID:
10455850
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
65
Issue:
11
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0. 
    more » « less
  2. Abstract

    Koopman operators linearize nonlinear dynamical systems, making their spectral information of crucial interest. Numerous algorithms have been developed to approximate these spectral properties, and dynamic mode decomposition (DMD) stands out as the poster child of projection-based methods. Although the Koopman operator itself is linear, the fact that it acts in an infinite-dimensional space of observables poses challenges. These include spurious modes, essential spectra, and the verification of Koopman mode decompositions. While recent work has addressed these challenges for deterministic systems, there remains a notable gap in verified DMD methods for stochastic systems, where the Koopman operator measures the expectation of observables. We show that it is necessary to go beyond expectations to address these issues. By incorporating variance into the Koopman framework, we address these challenges. Through an additional DMD-type matrix, we approximate the sum of a squared residual and a variance term, each of which can be approximated individually using batched snapshot data. This allows verified computation of the spectral properties of stochastic Koopman operators, controlling the projection error. We also introduce the concept of variance-pseudospectra to gauge statistical coherency. Finally, we present a suite of convergence results for the spectral information of stochastic Koopman operators. Our study concludes with practical applications using both simulated and experimental data. In neural recordings from awake mice, we demonstrate how variance-pseudospectra can reveal physiologically significant information unavailable to standard expectation-based dynamical models.

     
    more » « less
  3. Abstract

    Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out to a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.

     
    more » « less
  4. Abstract

    This work presents a detector‐integrated two‐tier control architecture capable of identifying the presence of various types of cyber‐attacks, and ensuring closed‐loop system stability upon detection of the cyber‐attacks. Working with a general class of nonlinear systems, an upper‐tier Lyapunov‐based Model Predictive Controller (LMPC), using networked sensor measurements to improve closed‐loop performance, is coupled with lower‐tier cyber‐secure explicit feedback controllers to drive a nonlinear multivariable process to its steady state. Although the networked sensor measurements may be vulnerable to cyber‐attacks, the two‐tier control architecture ensures that the process will stay immune to destabilizing malicious cyber‐attacks. Data‐based attack detectors are developed using sensor measurements via machine‐learning methods, namely artificial neural networks (ANN), under nominal and noisy operating conditions, and applied online to a simulated reactor‐reactor‐separator process. Simulation results demonstrate the effectiveness of these detection algorithms in detecting and distinguishing between multiple classes of intelligent cyber‐attacks. Upon successful detection of cyber‐attacks, the two‐tier control architecture allows convenient reconfiguration of the control system to stabilize the process to its operating steady state.

     
    more » « less
  5. Abstract

    Koopman operators are infinite‐dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information valuable for understanding dynamics. However, Koopman operators can have continuous spectra and infinite‐dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data‐driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we compute smoothed approximations of spectral measures associated with general measure‐preserving dynamical systems. We prove explicit convergence theorems for our algorithms (including for general systems that are not measure‐preserving), which can achieve high‐order convergence even for chaotic systems when computing the density of the continuous spectrum and the discrete spectrum. Since our algorithms have error control, ResDMD allows aposteri verification of spectral quantities, Koopman mode decompositions, and learned dictionaries. We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high‐dimensional state space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule with a 20,046‐dimensional state space and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number >105that has a 295,122‐dimensional state space.

     
    more » « less