Atmospheric bores have been shown to have a role in the initiation and maintenance of elevated convection. Previous observational studies of bores have been case studies of more notable events. However, this creates a selection bias toward extraordinary cases, while discussions of the differences between bores that favor convective initiation and maintenance and bores that do not are lacking from the literature. This study attempts to fill that gap by analyzing a high-temporal-resolution thermodynamic profile composite of eight bores observed by multiple platforms during the Plains Elevated Convection at Night (PECAN) campaign in order to assess the impact of bores on the environment. The time–height cross section of the potential temperature composite displays quasi-permanent parcel displacements up to 900 m with the bore passage. Low-level lifting is shown to weaken the capping inversion and reduce convective inhibition (CIN) and the level of free convection (LFC). Additionally, low-level water vapor increases by about 1 g kg−1in the composite mean. By assessing variability across the eight cases, it is shown that increases in low-level water vapor result in increases to convective available potential energy (CAPE), while drying results in decreased CAPE. Most cases resulted in decreased CIN and LFC height with themore »
- Award ID(s):
- 1636667
- Publication Date:
- NSF-PAR ID:
- 10188757
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 100
- Issue:
- 6
- Page Range or eLocation-ID:
- 1103 to 1121
- ISSN:
- 0003-0007
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generatedmore »
-
Four case studies from the Plains Elevated Convection at Night (PECAN) field experiment are used to investigate the impacts of horizontal and vertical resolution, and vertical mixing parameterization, on predictions of bore structure and upscale impacts of bores on their mesoscale environment. The reduction of environmental convective inhibition (CIN) created by the bore is particularly emphasized. Simulations are run with horizontal grid spacings ranging from 250 to 1000 m, as well as 50 m for one case study, different vertical level configurations, and different closure models for the vertical turbulent mixing at 250-m horizontal resolution. The 11 July case study was evaluated in greatest detail because it was the best observed case and has been the focus of a previous study. For this case, it is found that 250-m grid spacing improves upon 1-km grid spacing, LES configuration provides further improvement, and enhanced low-level vertical resolution also provides further improvement in terms of qualitative agreement between simulated and observed bore structure. Reducing LES grid spacing further to 50 m provided very little additional advantage. Only the LES experiments properly resolved the upscale influence of reduced low-level CIN. Expanding on the 11 July case study, three other cases from PECAN withmore »
-
Abstract The National Center for Atmospheric Research (NCAR) and Montana State University jointly developed water vapor micropulse differential absorption lidars (MPDs) that are a significant advance in eye-safe, unattended, lidar-based water vapor remote sensing. MPD is designed to provide continuous vertical water vapor profiles with high vertical (150 m) and temporal resolution (5 min) in the lower troposphere. This study aims to investigate MPD observation impacts and the scientific significance of MPDs for convective weather analyses and predictions using observation system simulation experiments (OSSEs). In this study, the Data Assimilation Research Testbed (DART) and the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model are used to conduct OSSEs for a case study of a mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment. A poor-performing control simulation that was drawn from a 40-member ensemble at 3-km resolution is markedly improved by assimilation of simulated observations drawn from a more skillful simulation that served as the nature run at 1-km resolution. In particular, assimilating surface observations corrected surface warm front structure errors, while MPD observations remedied errors in low- to midlevel moisture ahead of the MCS. Collectively, these analyses changes led to markedlymore »
-
During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerlymore »