skip to main content

Title: Coupling Structural and Adsorption Properties of Metal–Organic Frameworks: From Pore Size Distribution to Pore Type Distribution
Authors:
;
Award ID(s):
1834339
Publication Date:
NSF-PAR ID:
10188775
Journal Name:
ACS Applied Materials & Interfaces
Volume:
12
Issue:
13
Page Range or eLocation-ID:
15595 to 15605
ISSN:
1944-8244
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium-ion batteries (LIBs) are widely used energy storage devices, and sodium-ion batteries (SIBs) are promising alternatives to LIBs because sodium is of high abundance and low toxicity. However, a dominant obstacle for the advancement of LIBs and SIBs is the lack of high capacity anode materials, especially for SIBs. Here, we propose that three characteristics, namely appropriate pore size, suitable pore distribution, and an entirely planar topology, can help achieve ultrahigh capacity 2D anode materials. Under such guidelines, we constructed a B 7 P 2 monolayer, and investigated its potential as a LIB/SIB anode material by means of density functional theory (DFT) computations. Encouragingly, the B 7 P 2 monolayer possesses all the essential properties of a high-capacity LIB/SIB anode: its high stability ensures the experimental feasibility of synthesis, its metallicity does not change upon Li/Na adsorption and desorption, the Li/Na can well diffuse on the surface, and the open-circuit voltage is in a good range. Most importantly, the B 7 P 2 monolayer has a high storage capacity of 3117 mA h g −1 for both LIBs and SIBs, and this capacity value ranks among the highest for 2D SIB anode materials. This study offers us some good cluesmore »to design/discover other anode materials with ultrahigh capacities, and serves us another vivid example that (implicit and hidden) trends/rules in the literature can guide us in the design of functional materials more efficiently.« less
  2. Pore structure is a key determinant of soil functioning, and both root growth and activity of soil fauna are modified by and interact with pore structure in multiple ways. Cover cropping is a rapidly growing popular strategy for improving agricultural sustainability, including improvements in pore structure. However, since cover crop species encompass a variety of contrasting root architectures, they can have disparate effects on formation of soil pores and their characteristics, thus on the pore structure formation. Moreover, utilization of the existing pore systems and its modification by new root growth, in conjunction with soil fauna activity, can also vary by cover crop species, affecting the dynamics of biopores (creation and demolition). The objectives of this study were (i) to quantify the influence of 5 cover crop species on formation and size distribution of soil macropores (>36 μm Ø); (ii) to explore the changes in the originally developed pore architecture after an additional season of cover crop growth; and (iii) to assess the relative contributions of plant roots and soil fauna to fate and modifications of biopores. Intact soil cores were taken from 5 to 10 cm depth after one season of cover crop growth, followed by X-ray computed micro-tomography (CT)more »characterization, and then, the cores were reburied for a second root growing period of cover crops to explore subsequent changes in pore characteristics with the second CT scanning. Our data suggest that interactions of soil fauna and roots with pore structure changed over time. While in the first season, large biopores were created at the expense of small pores, in the second year these biopores were reused or destroyed by the creation of new ones through earthworm activities and large root growth. In addition, the creation of large biopores (>0.5 mm) increased total macroporosity. During the second root growing period, these large sized macropores, however, are reduced in size again through the action of soil fauna smaller than earthworms, suggesting a highly dynamic equilibrium. Different effects of cover crops on pore structure mainly arise from their differences in root volume, mean diameter as well as their reuse of existing macropores.« less