skip to main content


Title: Multi-Modal Recognition of Worker Activity for Human-Centered Intelligent Manufacturing
This study aims at sensing and understanding the worker’s activity in a human-centered intelligent manufacturing system. We propose a novel multi-modal approach for worker activity recognition by leveraging information from different sensors and in different modalities. Specifically, a smart armband and a visual camera are applied to capture Inertial Measurement Unit (IMU) signals and videos, respectively. For the IMU signals, we design two novel feature transform mechanisms, in both frequency and spatial domains, to assemble the captured IMU signals as images, which allow using convolutional neural networks to learn the most discriminative features. Along with the above two modalities, we propose two other modalities for the video data, i.e., at the video frame and video clip levels. Each of the four modalities returns a probability distribution on activity prediction. Then, these probability distributions are fused to output the worker activity classification result. A worker activity dataset is established, which at present contains 6 common activities in assembly tasks, i.e., grab a tool/part, hammer a nail, use a power-screwdriver, rest arms, turn a screwdriver, and use a wrench. The developed multi-modal approach is evaluated on this dataset and achieves recognition accuracies as high as 97% and 100% in the leave-one-out and half-half experiments, respectively.  more » « less
Award ID(s):
1646162
NSF-PAR ID:
10311551
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Engineering applications of artificial intelligence
Volume:
95
ISSN:
1873-6769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce caption-guided face recognition (CGFR) as a new framework to improve the performance of commercial-off-the-shelf (COTS) face recognition (FR) systems. In contrast to combining soft biometrics (e.g., facial marks, gender, and age) with face images, in this work, we use facial descriptions provided by face examiners as a piece of auxiliary information. However, due to the heterogeneity of the modalities, improving the performance by directly fusing the textual and facial features is very challenging, as both lie in different embedding spaces. In this paper, we propose a contextual feature aggregation module (CFAM) that addresses this issue by effectively exploiting the fine-grained word-region interaction and global image-caption association. Specifically, CFAM adopts a self-attention and a cross-attention scheme for improving the intra-modality and inter-modality relationship between the image and textual features, respectively. Additionally, we design a textual feature refinement module (TFRM) that refines the textual features of the pre-trained BERT encoder by updating the contextual embeddings. This module enhances the discriminative power of textual features with a cross-modal projection loss and realigns the word and caption embeddings with visual features by incorporating a visual-semantic alignment loss. We implemented the proposed CGFR framework on two face recognition models (ArcFace and AdaFace) and evaluated its performance on the Multi-Modal CelebA-HQ dataset. Our framework significantly improves the performance of ArcFace in both 1:1 verification and 1:N identification protocol. 
    more » « less
  2. null (Ed.)
    Speech recognition and machine translation have made major progress over the past decades, providing practical systems to map one language sequence to another. Although multiple modalities such as sound and video are becoming increasingly available, the state-of-the-art systems are inherently unimodal, in the sense that they take a single modality --- either speech or text --- as input. Evidence from human learning suggests that additional modalities can provide disambiguating signals crucial for many language tasks. Here, we describe the dataset, a large, open-domain collection of videos with transcriptions and their translations. We then show how this single dataset can be used to develop systems for a variety of language tasks and present a number of models meant as starting points. Across tasks, we find that building multi-modal architectures that perform better than their unimodal counterpart remains a challenge. This leaves plenty of room for the exploration of more advanced solutions that fully exploit the multi-modal nature of the dataset, and the general direction of multimodal learning with other datasets as well. 
    more » « less
  3. To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition. 
    more » « less
  4. To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition. 
    more » « less
  5. null (Ed.)
    Annotated IMU sensor data from smart devices and wearables are essential for developing supervised models for fine-grained human activity recognition, albeit generating sufficient annotated data for diverse human activities under different environments is challenging. Existing approaches primarily use human-in-the-loop based techniques, including active learning; however, they are tedious, costly, and time-consuming. Leveraging the availability of acoustic data from embedded microphones over the data collection devices, in this paper, we propose LASO, a multimodal approach for automated data annotation from acoustic and locomotive information. LASO works over the edge device itself, ensuring that only the annotated IMU data is collected, discarding the acoustic data from the device itself, hence preserving the audio-privacy of the user. In the absence of any pre-existing labeling information, such an auto-annotation is challenging as the IMU data needs to be sessionized for different time-scaled activities in a completely unsupervised manner. We use a change-point detection technique while synchronizing the locomotive information from the IMU data with the acoustic data, and then use pre-trained audio-based activity recognition models for labeling the IMU data while handling the acoustic noises. LASO efficiently annotates IMU data, without any explicit human intervention, with a mean accuracy of 0.93 ($\pm 0.04$) and 0.78 ($\pm 0.05$) for two different real-life datasets from workshop and kitchen environments, respectively. 
    more » « less