skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transformations in Elementary Teachers' Pedagogical Reasoning: Studying Teacher Learning in an Online Graduate Program in Engineering Education
This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in.  more » « less
Award ID(s):
1720334
PAR ID:
10189224
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundElementary educators are increasingly asked to teach engineering design, motivating study of how they learn to teach this discipline. In particular, there is a need to examine how teachers reason about pedagogical situations and dilemmas in engineering—how they draw on their disciplinary understandings, attention to students' thinking, and pedagogical practices to support students' learning. Purpose/HypothesisThe purpose of our qualitative study was to examine elementary teachers' pedagogical reasoning in an online graduate program. We asked: What stances do teachers take toward learning and teaching engineering design? How do these stances shift over the course of the program? Design/MethodWe identified two teachers, Alma and Margaret, who exhibited productive shifts in their pedagogical reasoning during the program. Drawing on interviews and videos of their teaching, we developed case studies characterizing their stances toward teaching and learning engineering. ResultsAlma shifted in her reasoning about teaching the design process, from treating it as linear, discrete steps to recognizing the dynamic, overlapping nature of design practices. Similarly, Margaret shifted in how she reasoned about failure and iteration, recognizing the need to help students analyze unexpected design performances to learn from and iterate on their designs. For both teachers, these shifts were dynamic and nonlinear, reflecting both context‐sensitivity and growing stability in their reasoning. ConclusionsEngineering teacher educators should provide opportunities for teachers to reason about the specific pedagogical dilemmas in engineering and consider how teachers integrate disciplinary understandings with attention to students' reasoning and actions and pedagogical practices. 
    more » « less
  2. This paper presents a case study of an elementary teacher, Holly, who participated in a federally funded summer professional development (PD) program aimed at integrating community-based engineering into elementary education. The study examines how Holly’s teaching practices and beliefs about teaching engineering contributed to the significant improvements in her students’ attitudes toward engineering and their perceptions of engineering as a potential career. Data were collected over three years through multiple methods, including post-PD interviews, lesson recordings, and a post-teaching interview. We analyzed classroom videos using a video analysis protocol. We used open coding to analyze the interviews. Once the analysis of the interviews and videos was completed, we engaged in a sense-making process to identify connections across data points (videos and interviews). Our findings showed that Holly extensively incorporated scientific inquiry into her lessons. This approach enabled students to develop their inquiry skills and facilitated a smooth transition to engineering design activities. By connecting class activities to the local context, students were able to see the relevance of engineering to their everyday lives and take ownership of their learning. This study emphasizes the potential of community-focused engineering to foster meaningful science and engineering practices in elementary education. 
    more » « less
  3. Karunakaran, S. S.; Higgins, A. (Ed.)
    The critical role of teachers in supporting student engagement with reasoning and proving has long been recognized (Nardi & Knuth, 2017; NCTM, 2014). While some studies examined how prospective secondary teachers (PSTs) develop dispositions and teaching practices that promote student engagement with reasoning and proving (e.g., Buchbinder & McCrone, 2020; Conner, 2007), very little is known about long-term development of proof-related practices of beginning teachers and what factors affect this development (Stylianides et al., 2017). During the supervised teaching experiences, interns often encounter tensions between balancing their commitments to the university and cooperating teacher, while also developing their own teaching styles (Bieda et al., 2015; Smagorinsky et al., 2004; Wang et al., 2008). Our study examines how sociocultural contexts of the teacher preparation program and of the internship school, supported or inhibited proof-related teaching practices of beginning secondary mathematics teachers. In particular, this study aims to understand the observed gap between proof-related teaching practices of one such teacher, Olive, in two settings: as a PST in a capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 2020) and as an intern in a high-school classroom. We utilize activity theory (Leont’ev, 1979) and Engeström’s (1987) model of an activity system to examine how the various components of the system: teacher (subject), teaching (object), the tasks (tools), the curriculum and the expected teaching style (rules), the cooperating teacher (community) and their involvement during the teaching (division of labor) interact with each other and affect the opportunities provided to students to engage with reasoning and proving (outcome). The analysis of four lessons from each setting, lesson plans, reflections and interviews, showed that as a PST, Olive engaged students with reasoning and proving through productive proof-related teaching practices and rich tasks that involved conjecturing, justifying, proving and evaluating arguments. In a sharp contrast, as an intern, Olive had to follow her school’s rigid curriculum and expectations, and to adhere to her cooperating teacher’s teaching style. As a result, in her lessons as an intern students received limited opportunities for reasoning and proving. Olive expressed dissatisfaction with this type of teaching and her desire to enact more proof-oriented practices. Our results show that the sociocultural components of the activity system (rules, community and division of labor), which were backgrounded in Olive’s teaching experience as a PST but prominent in her internship experience, influenced the outcome of engaging students with reasoning and proving. We discuss the importance of these sociocultural aspects as we examine how Olive navigated the tensions between the proof-related teaching practices she adopted in the capstone course and her teaching style during the internship. We highlight the importance of teacher educators considering the sociocultural aspects of teaching in supporting beginning teachers developing proof-related teaching practices. 
    more » « less
  4. Ayalon, M; Koichu, B; Leikin, R; Rubel, L; Tabach, M (Ed.)
    We follow a beginning mathematics teacher, Olive, from the university-based course Mathematical Reasoning and Proving for Secondary Teachers through the supervised internship where Olive taught in her cooperating teacher’s classroom. By drawing upon Activity Theory, we compare her teaching within the two teaching settings, and we examine the opportunities for reasoning and proving she provided to her students in each teaching setting. As a prospective teacher, Olive provided her students opportunities for reasoning and proving. During the internship, these opportunities initially diminished due to institutional and contextual constraints. However, Olive gradually carved out unique paths to engage students with reasoning and proving as her teaching independence increased. 
    more » « less
  5. null (Ed.)
    One way to support teachers' learning to facilitate the recent reform vision (NRC, 2012) in their classrooms is through professional development (PD). We explored a biology teacher’s (Monica) sensemaking during the PD that focused on facilitating productive science classroom discourse to understand her responses to the PD in terms of teaching science by engaging students in productive talk in science classrooms. Using both video and interview data, we analyzed the process of her sensemaking about facilitating (productive) talk during the PD and the meaning she was making of productive talk. Our analysis indicated that Monica participated in sensemaking mostly about her students' participation in talk. Throughout the PD conversations, she rarely focused on what she could do (or could have done) to facilitate student talk without the PD facilitators' pressing. This is supported by our analysis of the interviews with Monica, which showed that the sense that she was making about productive talk mostly focuses on students' contributions to the talk and their accountability to reasoning, scientific knowledge, and sensemaking. These findings provide implications for facilitating teachers’ sensemaking around new instructional practices and reforms within PD contexts. 
    more » « less