skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Radio Bursts: An Extragalactic Enigma
We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. Fast radio bursts (FRBs) occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times larger than those from Galactic pulsars. We survey FRB phenomenology, source models and host galaxies, coherent radiation models, and the role of plasma propagation effects in burst detection. The FRB field is guaranteed to be exciting: New telescopes will expand the sample from the current ∼80 unique burst sources (and only a few secure localizations and redshifts) to thousands, with burst localizations that enable host-galaxy redshifts emerging directly from interferometric surveys. ▪ FRBs are now established as an extragalactic phenomenon. ▪ Only a few sources are known to repeat. Despite the failure to redetect other FRBs, they are not inconsistent with all being repeaters. ▪ FRB sources may be new, exotic kinds of objects or known types in extreme circumstances. Many inventive models exist, ranging from alien spacecraft to cosmic strings, but those concerning compact objects and supermassive black holes have gained the most attention. A rapidly rotating magnetar is a promising explanation for FRB 121102 along with the persistent source associated with it, but alternative source models are not ruled out for it or other FRBs. ▪ FRBs are powerful tracers of circumsource environments, “missing baryons” in the intergalactic medium (IGM), and dark matter. ▪ The relative contributions of host galaxies and the IGM to propagation effects have yet to be disentangled, so dispersion measure distances have large uncertainties.  more » « less
Award ID(s):
1815242
PAR ID:
10189273
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Astronomy and Astrophysics
Volume:
57
Issue:
1
ISSN:
0066-4146
Page Range / eLocation ID:
417 to 465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Fast radio bursts (FRBs) are millisecond-time-scale radio transients, the origins of which are predominantly extragalactic and likely involve highly magnetized compact objects. FRBs undergo multipath propagation, or scattering, from electron density fluctuations on sub-parsec scales in ionized gas along the line of sight. Scattering observations have located plasma structures within FRB host galaxies, probed Galactic and extragalactic turbulence, and constrained FRB redshifts. Scattering also inhibits FRB detection and biases the observed FRB population. We report the detection of scattering times from the repeating FRB 20190520B that vary by up to a factor of 2 or more on minutes to days-long time-scales. In one notable case, the scattering time varied from 7.9 ± 0.4 ms to less than 3.1 ms ($$95{{\ \rm per\ cent}}$$ confidence) over 2.9 min at 1.45 GHz. The scattering times appear to be uncorrelated between bursts or with dispersion and rotation measure variations. Scattering variations are attributable to dynamic, inhomogeneous plasma in the circumsource medium, and analogous variations have been observed from the Crab pulsar. Under such circumstances, the frequency dependence of scattering can deviate from the typical power law used to measure scattering. Similar variations may therefore be detectable from other FRBs, even those with inconspicuous scattering, providing a unique probe of small-scale processes within FRB environments. 
    more » « less
  2. The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent radio source. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific star formation rate at a redshift z=0.241±0.001. The estimated host galaxy DM~≈903+72−111~pc~cm−3, nearly an order of magnitude higher than the average of FRB host galaxies, far exceeds the DM contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host galaxy identifications. The dense FRB environment and the association with a compact persistent radio source may point to a distinctive origin or an earlier evolutionary stage for this FRB source. 
    more » « less
  3. Abstract The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium 1 , which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs 2 , in at least one case there is evidence for an extreme magneto-ionic local environment 3,4 and a compact persistent radio source 5 . Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately $${903}_{-111}^{+72}$$ 903 − 111 + 72 parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies 2,6 , far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications. 
    more » « less
  4. Abstract Radio wave scattering can cause severe reductions in detection sensitivity for surveys of Galactic and extragalactic fast (∼ms duration) transients. While Galactic sources like pulsars undergo scattering in the Milky Way interstellar medium (ISM), extragalactic fast radio bursts (FRBs) can also experience scattering in their host galaxies and other galaxies intervening in their lines of sight. We assess Galactic and extragalactic scattering horizons for fast radio transients using a combination of NE2001 to model the dispersion measure and scattering time (τ) contributed by the Galactic disk, and independently constructed electron density models for the Galactic halo and other galaxies’ ISMs and halos that account for different galaxy morphologies, masses, densities, and strengths of turbulence. For source redshifts 0.5 ≤zs≤ 1, an all-sky, isotropic FRB population has simulated values ofτ(1 GHz) ranging from ∼1μs to ∼2 ms (90% confidence, observer frame) that are dominated by host galaxies, althoughτcan be ≫2 ms at low Galactic latitudes. A population atzs= 5 has 0.01 ≲τ≲ 300 ms at 1 GHz (90% confidence), dominated by intervening galaxies. About 20% of these high-redshift FRBs are predicted to haveτ> 5 ms at 1 GHz (observer frame), and ≳40% of FRBs betweenzs∼ 0.5–5 haveτ≳ 1 ms forν≤ 800 MHz. Our scattering predictions may be conservative if scattering from circumsource environments is significant, which is possible under specific conditions. The percentage of FRBs selected against from scattering could also be substantially larger than we predict if circumgalactic turbulence causes more small-scale (≪1 au) density fluctuations than observed from nearby halos. 
    more » « less
  5. Intense, millisecond-duration bursts of radio waves (named fast radio bursts) have been detected from beyond the Milky Way. Their dispersion measures—which are greater than would be expected if they had propagated only through the interstellar medium of the Milky Way—indicate extragalactic origins, and imply contributions from the intergalactic medium and perhaps from other galaxies. Although several theories exist regarding the sources of these fast radio bursts, their intensities, durations and temporal structures suggest coherent emission from highly magnetized plasma. Two of these bursts have been observed to repeat, and one repeater (FRB 121102) has been localized to the largest star-forming region of a dwarf galaxy at a cosmological redshift of 0.19. However, the host galaxies and distances of the hitherto non-repeating fast radio bursts are yet to be identified. Unlike repeating sources, these events must be observed with an interferometer that has sufficient spatial resolution for arcsecond localization at the time of discovery. Here we report the localization of a fast radio burst (FRB 190523) to a few-arcsecond region containing a single massive galaxy at a redshift of 0.66. This galaxy is different from the host of FRB 121102, as it is a thousand times more massive, with a specific star-formation rate (the star-formation rate divided by the mass) a hundred times smaller. 
    more » « less