In this work, we present the first database reconstruction attacks against response-hiding private range search schemes on encrypted databases of arbitrary dimensions. Falzon et al. (VLDB 2022) present a number of range-supporting schemes on arbitrary dimensions exhibiting different security and efficiency trade-offs. Additionally, they characterize a form of leakage, structure pattern leakage, also present in many one-dimensional schemes e.g., Demertzis et al. (SIGMOD 2016) and Faber et al. (ESORICS 2015). We present the first systematic study of this leakage and attack a broad collection of schemes, including schemes that allow the responses to contain false-positives (often considered the gold standard in security). We characterize the information theoretic limitations of a passive persistent adversary. Our work shows that for range queries, structure pattern leakage can be as vulnerable to attacks as access pattern leakage. We give a comprehensive evaluation of our attacks with a complexity analysis, a prototype implementation, and an experimental assessment on real-world datasets.
more »
« less
Pancake: Frequency Smoothing for Encrypted Data Stores
We present PANCAKE, the first system to protect key-value stores from access pattern leakage attacks with small constant factor bandwidth overhead. PANCAKE uses a new approach, that we call frequency smoothing, to transform plaintext ac- cesses into uniformly distributed encrypted accesses to an encrypted data store. We show that frequency smoothing prevents access pattern leakage attacks by passive persis- tent adversaries in a new formal security model. We inte- grate PANCAKE into three key-value stores used in produc- tion clusters, and demonstrate its practicality: on standard benchmarks, PANCAKE achieves 229× better throughput than non-recursive Path ORAM — within 3–6× of insecure base- lines for these key-value stores.
more »
« less
- Award ID(s):
- 1704742
- PAR ID:
- 10189407
- Date Published:
- Journal Name:
- USENIX Security Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recent years have seen an increased interest towards strong security primitives for encrypted databases (such as oblivious protocols) that hide the access patterns of query execution and reveal only the volume of results. However recent work has shown that even volume leakage can enable the reconstruction of entire columns in the database. Yet existing attacks rely on a set of assumptions that are unrealistic in practice for example they (i) require a large number of queries to be issued by the user or (ii) assume certain distributions on the queries or underlying data (e.g. that the queries are distributed uniformly at random or that the database does not contain missing values). In this work we present new attacks for recovering the content of individual user queries assuming no leakage from the system except the number of results and avoiding the limiting assumptions above. Unlike prior attacks our attacks require only a single query to be issued by the user for recovering the keyword. Furthermore our attacks make no assumptions about the distribution of issued queries or the underlying data. Instead our key insight is to exploit the behavior of real-world applications. We start by surveying 11 applications to identify two key characteristics that can be exploited by attackers-(l) file injection and (ii) automatic query replay. We present attacks that leverage these two properties in concert with volume leakage independent of the details of any encrypted database system. Subsequently we perform an attack on the real Gmail web client by simulating a server-side adversary. Our attack on Gmail completes within a matter of minutes demonstrating the feasibility of our techniques. We also present three ancillary attacks for situations when certain mitigation strategies are employed.more » « less
-
Dynamic Searchable Symmetric Encryption (DSSE) provides efficient techniques for securely searching and updating an encrypted database. However, efficient DSSE schemes leak some sensitive information to the server. Recent works have implemented forward and backward privacy as security properties to reduce the amount of information leaked during update operations. Many attacks have shown that leakage from search operations can be abused to compromise the privacy of client queries. However, the attack literature has not rigorously investigated techniques to abuse update leakage. In this work, we investigate update leakage under DSSE schemes with forward and backward privacy from the perspective of a passive adversary. We propose two attacks based on a maximum likelihood estimation approach, the UFID Attack and the UF Attack, which target forward-private DSSE schemes with no backward privacy and Level 2 backward privacy, respectively. These are the first attacks to show that it is possible to leverage the frequency and contents of updates to recover client queries. We propose a variant of each attack which allows the update leakage to be combined with search pattern leakage to achieve higher accuracy. We evaluate our attacks against a real-world dataset and show that using update leakage can improve the accuracy of attacks against DSSE schemes, especially those without backward privacy.more » « less
-
Searchable encryption enables searches to be performed on encrypted documents stored on an untrusted server without exposing the documents or the search terms to the server. Nevertheless, the server typically learns which encrypted documents match the query—the so-called access pattern—since the server must return those documents. Recent studies have demonstrated that access patterns can be used to infer the search terms in some scenarios. In this paper, we propose a framework to protect systems using searchable symmetric encryption from access-pattern leakage. Our technique is based on d-privacy, a generalized version of differential privacy that provides provable security guarantees against adversaries with arbitrary background knowledge.more » « less
-
Persistent key-value stores are widely used as building blocks in today’s IT infrastructure for managing and storing large amounts of data. However, studies of characterizing real-world workloads for key-value stores are limited due tothe lack of tracing/analyzing tools and the difficulty of collecting traces in operational environments. In this paper, we first present a detailed characterization of workloads from three typical RocksDB production use cases at Facebook: UDB (a MySQL storage layer for social graph data), ZippyDB (a distributed key-value store), and UP2X (a distributed key-value store for AI/ML services). These characterizations reveal several interesting findings: first, that the distribution of key and value sizes are highly related to the use cases/applications; second, that the accesses to key-value pairs have a good locality and follow certain special patterns; and third, that the collected performance metrics show a strong diurnal pattern in the UDB, but not the other two. We further discover that although the widely used key-value benchmark YCSB provides various workload configurations and key-value pair access distribution models, the YCSB triggered workloads for underlying storage systems are still not close enough to the workloads we collected due to ignorance of key-space localities. To address this issue, we propose a key-range based modeling and develop a benchmark that can better emulate the workloads of real-world key-value stores. This benchmark can synthetically generate more precise key-value queries that represent the reads and writes of key-value stores to the underlying storage system.more » « less
An official website of the United States government

