skip to main content


Title: Nuclear Mechanics within Intact Cells Is Regulated by Cytoskeletal Network and Internal Nanostructures
Abstract

The mechanical properties of the cellular nucleus are extensively studied as they play a critical role in important processes, such as cell migration, gene transcription, and stem cell differentiation. While the mechanical properties of the isolated nucleus have been tested, there is a lack of measurements about the mechanical behavior of the nucleus within intact cells and specifically about the interplay of internal nuclear components with the intracellular microenvironment, because current testing methods are based on contact and only allow studying the nucleus after isolation from a cell or disruption of cytoskeleton. Here, all‐optical Brillouin microscopy and 3D chemomechanical modeling are used to investigate the regulation of nuclear mechanics in physiological conditions. It is observed that the nuclear modulus can be modulated by epigenetic regulation targeting internal nuclear nanostructures such as lamin A/C and chromatin. It is also found that nuclear modulus is strongly regulated by cytoskeletal behavior through a robust mechanism conserved in different culturing conditions. Given the active role of cytoskeletal modulation in nearly all cell functions, this work will enable to reveal highly relevant mechanisms of nuclear mechanical regulations in physiological and pathological conditions.

 
more » « less
Award ID(s):
1929412
NSF-PAR ID:
10457734
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
18
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F‐actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non‐mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS‐CoV, or bacteria such asListeriaandStreptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract herehttps://youtu.be/YPfoddqvz-g.

     
    more » « less
  2. Cytoskeleton morphology plays a key role in regulating cell mechanics. Particularly, cellular mechanical properties are directly regulated by the highly cross-linked and dynamic cytoskeletal structure of F-actin and microtubules presented in the cytoplasm. Although great efforts have been devoted to investigating the qualitative relation between the cellular cytoskeleton state and cell mechanical properties, comprehensive quantification results of how the states of F-actin and microtubules affect mechanical behavior are still lacking. In this study, the effect of both F-actin and microtubules morphology on cellular mechanical properties was quantified using atomic force microscope indentation experiments together with the proposed image recognition-based cytoskeleton quantification approach. Young’s modulus and diffusion coefficient of NIH/3T3 cells with different cytoskeleton states were quantified at different length scales. It was found that the living NIH/3T3 cells sense and adapt to the F-actin and microtubules states: both the cellular elasticity and poroelasticity are closely correlated to the depolymerization degree of F-actin and microtubules at all measured indentation depths. Moreover, the significance of the quantitative effects of F-actin and microtubules in affecting cellular mechanical behavior is depth-dependent. 
    more » « less
  3. Senescence is a potent tumor-suppressive mechanism that irreversibly arrests the growth of damaged cells. However, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype (SASP) that alters the microenvironment to promote cancer. Paracrine factors in the SASP may also contribute to the formation of rare giant polyploidal cancer cells (GPCCs). A single-cell mechanical approach was used to profile cytoskeletal and nuclear mechanics, morphology, motility, and adhesion for breast cancer cells treated with conditioned media from senescent fibroblasts. Our study showed that a small but significant population of MDA-MB-231 breast cancer cells (less than 5%) treated with conditioned media from senescent LF-1 fibroblasts develop an enlarged morphology, chromosomal instability, and polyploidy, a phenotype associated with GPCCs. Although GPCCs are highly invasive and chemoresistant, little is known about their biophysical properties. First, we developed a method for identifying the small subpopulation of GPCCs in a heterogeneous population of cancer cells based on increased nuclear area and confirmed that GPCCs are more resistant to paclitaxel than normal-size MDA-MB-231 cells (NCCs). We then compared critical biophysical properties of NCCs and GPCCs, including cytoskeletal and nuclear mechanics, cell and nuclear morphology, motility, and adhesion. Cells were stained for cytoskeletal proteins actin, tubulin, and vinculin. Cytoskeletal organization was dramatically altered in GPCCs compared to NCCs. GPCCs displayed more disorganized microtubule structure, dense actin stress fibers, and mature focal adhesions. Intracellular particle tracking microrheology was used to measure cytoskeletal and nuclear mechanics. These studies demonstrated that although GPCCs are thought to be highly invasive cancer cells, they are inherently stiffer than NCCs, in terms of both their cytoskeletal and nuclear mechanics. This was surprising since more invasive cancer cells are often more compliant than less invasive cancer cells. This result may be in part to the ability for GPCCs to behave like activated stromal cells that stiffen in the tumor; we confirmed that GPCCs display similar adhesive behavior as activated stromal cells. To determine how mechanics correlates with cell migration, we used time-lapse nuclear tracking to measure cell motility. The average cell speed was higher for NCCs than for GPCCs; however, GPCCs moved longer distances over time because their motion was more directional. These findings highlight the unusual biophysical behavior of GPCCs. To develop pharmacologic tools that target GPCCs, it is imperative to understand their biophysical properties. 
    more » « less
  4. Key points

    Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage.

    Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level.

    We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure.

    Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell‐extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse.

    This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye.

    Abstract

    Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure‐induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1‐deficient cells. The majority of TM cells exhibited a delayed stretch‐activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell‐matrix contacts. Analysis of TM‐dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force‐sensing contexts. Piezo1‐dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure‐dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.

     
    more » « less
  5. Discher, Dennis (Ed.)
    The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a structure consisting of nesprin, SUN, and lamin proteins. A principal function of the LINC complex is anchoring the nucleus to the actin, microtubule, and intermediate filament cytoskeletons. The LINC complex is present in nearly all cell types, including endothelial cells. Endothelial cells line the innermost surfaces of blood vessels and are critical for blood vessel barrier function. In addition, endothelial cells have specialized functions, including adaptation to the mechanical forces of blood flow. Previous studies have shown that depletion of individual nesprin isoforms results in impaired endothelial cell function. To further investigate the role of the LINC complex in endothelial cells we utilized dominant negative KASH (DN-KASH), a dominant negative protein that displaces endogenous nesprins from the nuclear envelope and disrupts nuclear–cytoskeletal connections. Endothelial cells expressing DN-KASH had altered cell–cell adhesion and barrier function, as well as altered cell–matrix adhesion and focal adhesion dynamics. In addition, cells expressing DN-KASH failed to properly adapt to shear stress or cyclic stretch. DN-KASH–expressing cells exhibited impaired collective cell migration in wound healing and angiogenesis assays. Our results demonstrate the importance of an intact LINC complex in endothelial cell function and homeostasis. 
    more » « less