Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analysis of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
more »
« less
RNA sectors and allosteric function within the ribosome
The ribosome translates the genetic code into proteins in all domains of life. Its size and complexity demand long-range interactions that regulate ribosome function. These interactions are largely unknown. Here, we apply a global coevolution method, statistical coupling analysis (SCA), to identify coevolving residue networks (sectors) within the 23S ribosomal RNA (rRNA) of the large ribosomal subunit. As in proteins, SCA reveals a hierarchical organization of evolutionary constraints with near-independent groups of nucleotides forming physically contiguous networks within the three-dimensional structure. Using a quantitative, continuous-culture-with-deep-sequencing assay, we confirm that the top two SCA-predicted sectors contribute to ribosome function. These sectors map to distinct ribosome activities, and their origins trace to phylogenetic divergences across all domains of life. These findings provide a foundation to map ribosome allostery, explore ribosome biogenesis, and engineer ribosomes for new functions. Despite differences in chemical structure, protein and RNA enzymes appear to share a common internal logic of interaction and assembly.
more »
« less
- Award ID(s):
- 2021739
- PAR ID:
- 10189629
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 33
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 19879 to 19887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ribosome is a ribonucleoprotein complex found in all domains of life. Its role is to catalyze protein synthesis, the messenger RNA (mRNA)-templated formation of amide bonds between α-amino acid monomers. Amide bond formation occurs within a highly conserved region of the large ribosomal subunit known as the peptidyl transferase center (PTC). Here we describe the step-wise design and characterization of mini-PTC 1.1, a 284-nucleotide RNA that recapitulates many essential features of the Escherichia coli PTC. Mini-PTC 1.1 folds into a PTC-like structure under physiological conditions, even in the absence of r-proteins, and engages small molecule analogs of A- and P-site tRNAs. The sequence of mini-PTC 1.1 differs from the wild type E. coli ribosome at 12 nucleotides that were installed by a cohort of citizen scientists using the on-line video game Eterna. These base changes improve both the secondary structure and tertiary folding of mini-PTC 1.1 as well as its ability to bind small molecule substrate analogs. Here, the combined input from Eterna citizen-scientists and RNA structural analysis provides a robust workflow for the design of a minimal PTC that recapitulates many features of an intact ribosome.more » « less
-
The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro . RNA tags in the Escherichia coli large ribosomal (50S) subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.more » « less
-
N.A. (Ed.)In order to become bioactive, proteins need to be biosynthesized and protected from aggregation during translation. The ribosome and molecular chaperones contribute to both tasks. While it is known that some ribosomal proteins (r-proteins) interact with ribosome-bound nascent chains (RNCs), specific interaction networks and their role within the ribosomal machinery remain poorly characterized and understood. Here, we find that RNCs of variable sequence and length (beyond the 1st C-terminal reside) do not modify the apparent stability of the peptidyl-transferase center (PTC) and r-proteins. Thus, RNC/r-protein interaction networks close to the PTC have no effect on the apparent stability of ribosome-RNC complexes. Further, fluorescence anisotropy decay, chemical-crosslinking and Western blots show that RNCs of the foldable protein apoHmp1-140 have an N-terminal compact region (6394 residues) and interact specifically with r-protein L23 but not with L24 or L29, at the ribosomal-tunnel exit. Longer RNCs bear a similar compact region and interact either with L23 alone or with L23 and another unidentified r-protein, or with molecular chaperones. The apparent strength of RNC/r-protein interactions does not depend on RNC sequence. Taken together, our findings show that RNCs encoding foldable protein sequences establish an expanding specific interaction network as they get longer, including L23, another r-protein and chaperones. Interestingly, the ribosome alone (i.e., in the absence of chaperones) provides indiscriminate support to RNCs bearing up to ca. 190 residues, regardless of nascent-chain sequence and foldability. In all, this study highlights the unbiased features of the ribosome as a powerful nascent-protein interactor.more » « less
-
Proper codon/anticodon pairing within the ribosome necessitates linearity of the transcript. Any structures formed within a messenger RNA (mRNA) must be unwound before the respective codon is interpreted. Linearity, however, is not always the norm; some intricate structures within mRNA are able to exert unique ribosome/mRNA interactions to regulate translation. Intrinsic kinetic and thermal stability in many of these structures are efficient in slowing translation causing pausing of the ribosome. Altered translation kinetics arising from atypical interactions have been shown to affect intersubunit rotation. Here, we employ single-molecule Förster resonance energy transfer (smFRET) to observe changes in intersubunit rotation of the ribosome as it approaches downstream structured nucleic acid. The emergence of the hyperrotated state is critically dependent on the distance between downstream structure and the ribosome, suggesting interactions with the helicase center are allosterically coupled to intersubunit rotation. Further, molecular dynamics (MD) simulations were performed to determine ribosomal protein/mRNA interactions that may play a pivotal role in helicase activity and ultimately unwinding of downstream structure.more » « less
An official website of the United States government

