skip to main content


Title: A Deep Learning‐Based Approach to Forecast the Onset of Magnetic Substorms
Abstract

The auroral substorm has been extensively studied over the last six decades. However, our understanding of its driving mechanisms is still limited and so is our ability to accurately forecast its onset. In this study, we present the first deep learning‐based approach to predict the onset of a magnetic substorm, defined as the signature of the auroral electrojets in ground magnetometer measurements. Specifically, we use a time history of solar wind speed (Vx), proton number density, and interplanetary magnetic field (IMF) components as inputs to forecast the occurrence probability of an onset over the next 1 hr. The model has been trained and tested on a data set derived from the SuperMAG list of magnetic substorm onsets and can correctly identify substorms ∼75% of the time. In contrast, an earlier prediction algorithm correctly identifies ∼21% of the substorms in the same data set. Our model's ability to forecast substorm onsets based on solar wind and IMF inputs prior to the actual onset time, and the trend observed in IMFBzprior to onset together suggest that a majority of the substorms may not be externally triggered by northward turnings of IMF. Furthermore, we find that IMFBzandVxhave the most significant influence on model performance. Finally, principal component analysis shows a significant degree of overlap in the solar wind and IMF parameters prior to both substorm and nonsubstorm intervals, suggesting that solar wind and IMF alone may not be sufficient to forecast all substorms, and preconditioning of the magnetotail may be an important factor.

 
more » « less
Award ID(s):
1822056 1839509
NSF-PAR ID:
10456287
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
17
Issue:
11
ISSN:
1542-7390
Page Range / eLocation ID:
p. 1534-1552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze three substorms that occur on (1) 9 March 2008 05:14 UT, (2) 26 February 2008 04:05 UT, and (3) 26 February 2008 04:55 UT. Using ACE solar wind velocity and interplanetary magnetic fieldBzvalues, we calculate the rectified (southwardBz) solar wind voltage propagated to the magnetosphere. The solar wind conditions for the two events were vastly different, 300 kV for 9 March 2008 substorm, compared to 50 kV for 26 February 2008. The voltage is input to a nonlinear physics‐based model of the magnetosphere called WINDMI. The output is the westward auroral electrojet current which is proportional to the auroral electrojet (AL) index from World Data Center for Geomagnetism Kyoto and the SuperMAG auroral electrojet index (SML). Substorm onset times are obtained from the superMAG substorm database, Pu et al. (2010,https://doi.org/10.1029/2009JA014217), Lui (2011,https://doi.org/10.1029/2010JA016078) and synchronized to Time History of Events and Macroscale Interactions during Substorms satellite data. The timing of onset, model parameters, and intermediate state space variables are analyzed. The model onsets occurred about 5 to 10 min earlier than the reported onsets. Onsets occurred when the geotail current in the WINDMI model reached a critical threshold of 6.2 MA for the 9 March 2008 event, while, in contrast, a critical threshold of 2.1 MA was obtained for the two 26 February 2008 events. The model estimates 1.99 PJ of total energy transfer during the 9 March 2008 event, with 0.95 PJ deposited in the ionosphere. The smaller events on 26 February 2008 resulted in a total energy transfer of 0.37 PJ according to the model, with 0.095 PJ deposited in the ionosphere.

     
    more » « less
  2. Abstract

    We model lower band chorus observations from the DEMETER satellite using daily and hourly autoregressive‐moving average transfer function (ARMAX) equations. ARMAX models can account for serial autocorrelation between observations that are measured close together in time and can be used to predict a response variable based on its past behavior without the need for recent data. Unstable distributions of radiation belt source electrons (tens of keV) and the substorm activity (SMEd from the SuperMAG array) that is thought to inject these electrons were both statistically significant explanatory variables in a daily ARMAX model describing chorus. Predictions from this model correlated well with observations in a hold‐out test data set (validation correlation of 0.675). Source electron flux was most influential when observations came from the same day or the day before the chorus measurement, with effects decaying rapidly over time. Substorms were more influential when they occurred on previous days, presumably due to their injecting source electrons from the plasma sheet. A daily ARMAX model with interplanetary magnetic field (IMF)|B|, IMFBz, and solar wind pressure as inputs instead of those given above was somewhat less predictive of chorus (r=0.611). An hourly ARMAX model with only solar wind and IMF inputs was even less successful, with a validation correlation of 0.502.

     
    more » « less
  3. Abstract

    In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.

     
    more » « less
  4. Abstract

    The coupling function monitors solar wind driving of geomagnetic activity. Magnetic indices, including the polar cap (PC) index, the auroral lower (AL) index, and the midlatitude positive bay index (MPB), provide measures of the magnetospheric response. Sharp changes in these are associated with the onset of a substorm and a maximum in coupling. Many reinterpret this association as evidence that northward turnings of the interplanetary magnetic field (IMF) trigger onset. We investigate this hypothesis using a list of over 100,000 negative bay onsets. When data are available, we calculate coupling and its time derivatives. From these, we construct ensembles of data segments centered on the onsets.`For all lists, a pulse occurs 20 min before onset and appears to trigger onset. By correlating the average derivative with every event in the ensemble, we conclude that a pulse of either sign precedes 40% of all onsets. More than half of the triggered onsets display a positive pulse, and slightly fewer show a negative pulse. Substorms following a positive pulse are stronger than those after a negative pulse. The pulse is usually hidden by noise, but ensemble averaging and correlation analysis can detect the pulse in the coupling data.

     
    more » « less
  5. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less