The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
Trace2TAP: Synthesizing Trigger-Action Programs From Traces of Behavior
Two common approaches for automating IoT smart spaces are having users write rules using trigger-action programming (TAP) or training machine learning models based on observed actions. In this paper, we unite these approaches. We introduce and evaluate Trace2TAP, a novel method for automatically synthesizing TAP rules from traces (time-stamped logs of sensor readings and manual actuations of devices). We present a novel algorithm that uses symbolic reasoning and SAT-solving to synthesize TAP rules from traces. Compared to prior approaches, our algorithm synthesizes generalizable rules more comprehensively and fully handles nuances like out-of-order events. Trace2TAP also iteratively proposes modified TAP rules when users manually revert automations. We implemented our approach on Samsung SmartThings. Through formative deployments in ten offices, we developed a clustering/ranking system and visualization interface to intelligibly present the synthesized rules to users. We evaluated Trace2TAP through a field study in seven additional offices. Participants frequently selected rules ranked highly by our clustering/ranking system. Participants varied in their automation priorities, and they sometimes chose rules that would seem less desirable by traditional metrics like precision and recall. Trace2TAP supports these differing priorities by comprehensively synthesizing TAP rules and bringing humans into the loop during automation.
- Publication Date:
- NSF-PAR ID:
- 10189821
- Journal Name:
- Proceedings of the ACM on interactive mobile wearable and ubiquitous technologies
- Volume:
- 4
- Issue:
- 3
- Page Range or eLocation-ID:
- 104
- ISSN:
- 2474-9567
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Trigger-action programming (TAP) is a programming model enabling users to connect services and devices by writing if-then rules. As such systems are deployed in increasingly complex scenarios, users must be able to identify programming bugs and reason about how to fix them. We first systematize the temporal paradigms through which TAP systems could express rules. We then identify ten classes of TAP programming bugs related to control flow, timing, and inaccurate user expectations. We report on a 153-participant online study where participants were assigned to a temporal paradigm and shown a series of pre-written TAP rules. Half of the rules exhibited bugs from our ten bug classes. For most of the bug classes, we found that the presence of a bug made it harder for participants to correctly predict the behavior of the rule. Our findings suggest directions for better supporting end-user programmers.
-
Trigger-action programming (TAP) empowers a wide array of users to automate Internet of Things (IoT) devices. However, it can be challenging for users to create completely correct trigger-action programs (TAPs) on the first try, necessitating debugging. While TAP has received substantial research attention, TAP debugging has not. In this paper, we present the first empirical study of users’ end-to-end TAP debugging process, focusing on obstacles users face in debugging TAPs and how well users ultimately fix incorrect automations. To enable this study, we added TAP capabilities to an existing 3-D smart home simulator. Thirty remote participants spent a total of 84 hours debugging TAPs using this simulator. Without additional support, participants were often unable to fix buggy TAPs due to a series of obstacles we document. However, we also found that two novel tools we developed helped participants overcome many of these obstacles and more successfully debug TAPs. These tools collect either implicit or explicit feedback from users about automations that should or should not have happened in the past, using a SAT-solving-based algorithm we developed to automatically modify the TAPs to account for this feedback.
-
End-user programming, particularly trigger-action programming (TAP), is a popular method of letting users express their intent for how smart devices and cloud services interact. Unfortunately, sometimes it can be challenging for users to correctly express their desires through TAP. This paper presents AutoTap, a system that lets novice users easily specify desired properties for devices and services. AutoTap translates these properties to linear temporal logic (LTL) and both automatically synthesizes property-satisfying TAP rules from scratch and repairs existing TAP rules. We designed AutoTap based on a user study about properties users wish to express. Through a second user study, we show that novice users made significantly fewer mistakes when expressing desired behaviors using AutoTap than using TAP rules. Our experiments show that AutoTap is a simple and effective option for expressive end-user programming.
-
Lierler, Yuliya ; Morales, Jose F ; Dodaro, Carmine ; Dahl, Veroniica ; Gebser, Martin ; Tekle, Tuncay (Ed.)Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do so (OpenSesame, Google's Sling, etc.). Unfortunately, at present, extraction of logical facts from unrestricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use. Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine (KALM), have shown to have very high accuracy compared to others, and a natural question is to what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting the KALM framework to a neural natural languagemore »