skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Digital Optical Neural Networks for Large-Scale Machine Learning
We propose a digital incoherent optical neural network architecture using the passive data routing and copying capabilities of optics for artificial neural network acceleration. We demonstrate a proof-of-concept experiment and analyze optimal use cases.  more » « less
Award ID(s):
1946976
PAR ID:
10190142
Author(s) / Creator(s):
Date Published:
Journal Name:
CLEO 2020
Page Range / eLocation ID:
SM1E.4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of low-level perception with high-level reasoning is one of the oldest problems in Artificial Intelligence. Recently, several proposals were made to implement the reasoning process in complex neural network architectures. While these works aim at extending neural networks with the capability of reasoning, a natural question that we consider is: can we extend answer set programs with neural networks to allow complex and high-level reasoning on neural network outputs? As a preliminary result, we propose NeurASP – a simple extension of answer set programs by embracing neural networks where neural network outputs are treated as probability distributions over atomic facts in answer set programs. We show that NeurASP can not only improve the perception accuracy of a pre-trained neural network, but also help to train a neural network better by giving restrictions through logic rules. However, training with NeurASP would take much more time than pure neural network training due to the internal use of a symbolic reasoning engine. For future work, we plan to investigate the potential ways to solve the scalability issue of NeurASP. One potential way is to embed logic programs directly in neural networks. On this route, we plan to first design a SAT solver using neural networks, then extend such a solver to allow logic programs. 
    more » « less
  2. A neural network method for fractional order diffusion equations with integral fractional Laplacian is studied. We employ the Ritz formulation for the corresponding fractional equation and then derive an approximate solution of an optimization problem in the function class of neural network sets. Connecting the neural network sets with weighted Sobolev spaces, we prove the convergence and establish error estimates of the neural network method in the energy norm. To verify the theoretical results, we carry out numerical experiments and report their outcome. 
    more » « less
  3. Abstract Neural networks have become increasingly prevalent within the geosciences, although a common limitation of their usage has been a lack of methods to interpret what the networks learn and how they make decisions. As such, neural networks have often been used within the geosciences to most accurately identify a desired output given a set of inputs, with the interpretation of what the network learns used as a secondary metric to ensure the network is making the right decision for the right reason. Neural network interpretation techniques have become more advanced in recent years, however, and we therefore propose that the ultimate objective of using a neural network can also be the interpretation of what the network has learned rather than the output itself. We show that the interpretation of neural networks can enable the discovery of scientifically meaningful connections within geoscientific data. In particular, we use two methods for neural network interpretation called backward optimization and layerwise relevance propagation, both of which project the decision pathways of a network back onto the original input dimensions. To the best of our knowledge, LRP has not yet been applied to geoscientific research, and we believe it has great potential in this area. We show how these interpretation techniques can be used to reliably infer scientifically meaningful information from neural networks by applying them to common climate patterns. These results suggest that combining interpretable neural networks with novel scientific hypotheses will open the door to many new avenues in neural network‐related geoscience research. 
    more » « less
  4. Neural Network potentials are developed which accurately make and break bonds for use in molecular simulations. We report a neural network potential that can describe the potential energy surface for carbon–carbon bond dissociation with less than 1 kcal mol−1 error compared to complete active space second-order perturbation theory (CASPT2), and maintains this accuracy for both the minimum energy path and molecular dynamic calculations up to 2000 K. We utilize a transfer learning algorithm to develop neural network potentials to generate potential energy surfaces; this method aims to use the minimum amount of CASPT2 data on small systems to train neural network potentials while maintaining excellent transferability to larger systems. First, we generate homolytic carbon–carbon bond dissociation data of small size alkanes with density functional theory (DFT) energies to train the potentials to accurately predict bond dissociation at the DFT level. Then, using transfer learning, we retrained the neural network potential to the CASPT2 level of accuracy. We demonstrate that the neural network potential only requires bond dissociation data of a few small alkanes to accurately predict bond dissociation energy in larger alkanes. We then perform additional training on molecular dynamic simulations to refine our neural network potentials to obtain high accuracy for general use in molecular simulation. This training algorithm is generally applicable to any type of bond or any level of theory and will be useful for the generation of new reactive neural network potentials. 
    more » « less
  5. arXiv (Ed.)
    In the event of a nuclear accident, or the detonation of a radiological dispersal device, quickly locating the source of the accident or blast is important for emergency response and environmental decontamination. At a specified time after a simulated instantaneous release of an aerosolized radioactive contaminant, measurements are recorded downwind from an array of radiation sensors. Neural networks are employed to infer the source release parameters in an accurate and rapid manner using sensor and mean wind speed data. We consider two neural network constructions that quantify the uncertainty of the predicted values; a categorical classification neural network and a Bayesian neural network. With the categorical classification neural network, we partition the spatial domain and treat each partition as a separate class for which we estimate the probability that it contains the true source location. In a Bayesian neural network, the weights and biases have a distribution rather than a single optimal value. With each evaluation, these distributions are sampled, yielding a different prediction with each evaluation. The trained Bayesian neural network is thus evaluated to construct posterior densities for the release parameters. Results are compared to Markov chain Monte Carlo (MCMC) results found using the Delayed Rejection Adaptive Metropolis Algorithm. The Bayesian neural network approach is generally much cheaper computationally than the MCMC approach as it relies on the computational cost of the neural network evaluation to generate posterior densities as opposed to the MCMC approach which depends on the computational expense of the transport and radiation detection models. 
    more » « less