Introduction Why do some students maintain their career expectations in STEM (science, technology, engineering, mathematics), whereas others change their expectations? Using situated expectancy-value and social cognitive career theories, we sought to investigate the extent to which STEM support predicted changes in students' STEM career expectations during high school, and if these processes varied by whether the student had college educated or noncollege educated parents. Methods Using the nationally representative data set of the High School Longitudinal Study, we investigated the predictors of changes in US students' STEM career expectations from 9th to 11th grade (n = 13,100, 54% noncollege educated parents, 51% girls, 55% White, 21% Latinx, 12% Black). Results and Conclusions Students with noncollege educated parents were significantly more likely to change from STEM to non-STEM career expectations by 11th grade or to have stable non-STEM career expectations (compared to having stable STEM expectations or changing from non-STEM to STEM expectations). Additionally, students with noncollege educated parents were less likely to receive STEM support from parents and attend extracurricular activities compared to students with college educated parents. However, when examining the predictors among students with noncollege educated parents, students were more likely to maintain their expectations for a STEM career from 9th to 11th grade (compared to switching to a non-STEM career) if they had parental STEM support. Additionally, all students regardless of parents' level of education were more likely to maintain their expectations for a STEM career (vs. switching to a non-STEM career) through high school if they received teacher STEM support. Furthermore, students were more likely to develop STEM career expectations (vs. maintaining non-STEM career expectations) if they had parent STEM support. These findings highlight how parent and teacher STEM support may bolster STEM career expectations, particularly among students with noncollege educated parents. 
                        more » 
                        « less   
                    
                            
                            Predicting Student Participation in STEM Careers: The Role of Affect and Engagement during Middle School
                        
                    
    
            Given the increasing need for skilled workers in science, technology, engineering, and mathematics (STEM), there is a burgeoning interest to encourage young students to pursue a career in STEM fields. Middle school is an opportune time to guide students' interests towards STEM disciplines, as they begin to think about and plan for their career aspirations. Previous studies have shown that detectors of students' learning, affect, and engagement, measured from their interactions within an online tutoring system during middle school, are strongly predictive of their eventual choice to attend college and enroll in a STEM major (San Pedro et al., 2013; 2014). In this study, we extend prior work by examining how the constructs measured by these detectors relate to the decision to participate in a STEM career after college. Findings from this study suggest that subtle forms of disengagement (i.e., gaming the system, carelessness) are predictive and can potentially provide actionable information for teachers and counselors to apply early intervention in STEM learning. In general, this study sheds light on the relevant student factors that influence STEM participation years later, providing a more comprehensive understanding of student STEM trajectories. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10190395
- Date Published:
- Journal Name:
- Journal of educational data mining
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2157-2100
- Page Range / eLocation ID:
- 33-47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors.more » « less
- 
            There is a shortage of research examining Black male middle school students’ early experiences, content and career exposure, and mentoring in STEM programs at HBCUs. Using Harper’s Anti-Deficit Achievement Framework, this research examined the asset-based pedagogy used to teach middle school Black boys (n=169) using survey data from a more extensive mixed-methods study of STEM programs at HBCUs. Results show that Black boys perceived the instructors and mentors incorporated a relatively high level of engagement and pedagogical practice using transactional strategies (meaningful learning, learning community, teacher student relationship quality). The more Black boys perceived meaningful connections in their lessons, the higher teacher student relationship quality and learning community ratings. The use of the three transactional instructional strategies resulted in Black boys' perceived use of critical thinking in the STEM learning context. As a result of participating in the STEM programs at HBCUs, Black boys significantly increased in STEM-based academic efficacy, specifically in technology. Implications for teachers, teacher educators, and program mentors and instructors in STEM spaces for Black boys are discussed.more » « less
- 
            In early 2020, a research collaboration between a college of engineering, a research institute, a pre-college STEM program, a rural school district, and the local advanced manufacturing industry began. The goal of this Innovative Technology Experiences for Students and Teachers (ITEST) project was to create community-based engineering design experiences for underserved middle school students (grades 6-8) from rural NC aimed to improve their cognitive (STEM content knowledge and career awareness) and non-cognitive (interest, self-efficacy, and STEM identity) outcomes, and ultimately lead to their increased participation in STEM fields, particularly engineering. The project leverages strategic partnerships to create a 3-part, grade-level specific Engineering Design and Exploration course that engages middle school students in authentic engineering design experiences that allow them to research, design, and problem-solve in a simulated advanced manufacturing environment. Shortly after receiving university approval to begin the research process, progress was halted due to an unprecedented global health crisis. The school district was closed for several weeks as administrators and teachers prepared to transition to remote learning. In addition, the district experienced unexpected teacher and administrator turnover. In the wake of such uncertainty, the partners have pivoted their research design to work more closely with industry partners while still maintaining an active relationship with the school district as they rebuild. This paper will describe the challenges faced, strategies employed, and lessons learned during the course development and implementation process.more » « less
- 
            This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    