skip to main content

Title: Strain-controlled superconductivity in few-layer NbSe2
The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor−insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor−insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.
Authors:
Award ID(s):
1937155
Publication Date:
NSF-PAR ID:
10190962
Journal Name:
ACS applied materials interfaces
Volume:
12
Issue:
34
Page Range or eLocation-ID:
38744-38750
ISSN:
1944-8252
Sponsoring Org:
National Science Foundation
More Like this
  1. We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the criticalmore »temperature. We observe a nonmonotonous dependence of the chain resistance on both temperature and magnetic field, with a pronounced resistance peak at temperatures at which some but not all islands are superconducting. We explain this phenomenon by the inhomogeneity of the chains, in which neighboring superconducting islands have slightly different critical temperatures. We argue that the Giaever’s resistance divergence can also occur in the zero-temperature limit. Such quantum transition can occur if the magnetic field is tuned such that it suppresses superconductivity in the islands with the weaker critical field, while the islands with stronger energy gap remain superconducting. In such a field, the system acts as a chain of S-I-N junctions.« less
  2. The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tunable fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHImore »is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.« less
  3. The strong Ising spin–orbit coupling in certain two-dimensional transition metal dichalcogenides can profoundly affect the superconducting state in few-layer samples. For example, in NbSe2, this effect combines with the reduced dimensionality to stabilize the superconducting state against magnetic fields up to ~35 T, and could lead to topological superconductivity. Here we report a two-fold rotational symmetry of the superconducting state in few-layer NbSe2 under in-plane external magnetic fields, in contrast to the three-fold symmetry of the lattice. Both the magnetoresistance and critical field exhibit this two-fold symmetry, and it also manifests deep inside the superconducting state in NbSe2/CrBr3 superconductor-magnet tunnelmore »junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behaviour to the mixing between two closely competing pairing instabilities, namely the conventional s-wave instability typical of bulk NbSe2 and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results demonstrate the unconventional character of the pairing interaction in few-layer transition metal dichalcogenides and highlight the exotic superconductivity in this family of two-dimensional materials.« less
  4. Turning on superconductivity in a topologically nontrivial insulator may provide a route to search for non-Abelian topological states. However, existing demonstrations of superconductor-insulator switches have involved only topologically trivial systems. Here we report reversible, in situ electrostatic on-off switching of superconductivity in the recently established quantum spin Hall insulator monolayer tungsten ditelluride (WTe2). Fabricated into a van der Waals field-effect transistor, the monolayer’s ground state can be continuously gate-tuned from the topological insulating to the superconducting state, with critical temperaturesTcup to ~1 kelvin. Our results establish monolayer WTe2as a material platform for engineering nanodevices that combine superconducting and topological phasesmore »of matter.

    « less
  5. The layered semimetal tungsten ditelluride (WTe 2 ) has recently been found to be a two-dimensional topological insulator (2D TI) when thinned down to a single monolayer, with conducting helical edge channels. We found that intrinsic superconductivity can be induced in this monolayer 2D TI by mild electrostatic doping at temperatures below 1 kelvin. The 2D TI–superconductor transition can be driven by applying a small gate voltage. This discovery offers possibilities for gate-controlled devices combining superconductivity and nontrivial topological properties, and could provide a basis for quantum information schemes based on topological protection.