skip to main content


Title: All-metal σ-antiaromaticity in dimeric cluster anion {[CuGe 9 Mes] 2 } 4−
In this work, we report a dimeric cluster anion, {[CuGe 9 Mes] 2 } 4− , which was isolated as the [K(2,2,2-crypt)] + salt and characterized by using single-crystal X-ray diffraction and ESI mass spectroscopy. The title cluster represents the first locally σ-antiaromatic compound in the solid state, as well as the first heteroatomic antiaromatic compound.  more » « less
Award ID(s):
1664379
PAR ID:
10191085
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
48
ISSN:
1359-7345
Page Range / eLocation ID:
6583 to 6586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of ion traps as cooling devices has revolutionized ion spectroscopy as it is now possible to efficiently cool ions vibrationally and rotationally to levels where truly high-resolution experiments are now feasible. Here, we report the first results of a new experimental apparatus that couples a cryogenic 3D Paul trap with a laser vaporization cluster source for high-resolution photoelectron imaging of cold cluster anions. We have demonstrated the ability of the new apparatus to efficiently cool BiO − and BiO 2 − to minimize vibrational hot bands and allow high-resolution photoelectron images to be obtained. The electron affinities of BiO and BiO 2 are measured accurately for the first time to be 1.492(1) and 3.281(1) eV, respectively. Vibrational frequencies for the ground states of BiO and BiO 2 , as well as those for the anions determined from temperature-dependent studies, are reported. 
    more » « less
  2. Abstract

    Antiaromaticity, as introduced in 1965, usually refers to monocyclic systems with 4nπ electrons. This concept was extended to all‐metal molecules after the observation of Li3Al4in the gas phase. However, the solid‐phase counterparts have not been documented to date. Herein, we describe a series of all‐metal antiaromatic anions, [Ln(η4‐Sb4)3]3−(Ln=La, Y, Ho, Er, Lu), which were isolated as the K([2.2.2]crypt) salts and identified by single‐crystal X‐ray diffraction. Based on the results obtained from the chemical bonding analysis, multicenter indices, and the electron‐counting rule, we conclude that the core [Ln(η4‐Sb4)3]3−fragment of the crystal has three locally π‐antiaromatic Sb4fragments. This complex represents the first locally π‐antiaromatic all‐metal system in the solid state, which is stabilized by interactions of the three π‐antiaromatic units with the central metal atom.

     
    more » « less
  3. Borophenes are atom-thin boron layers that can be grown on coinage metal substrates and have become an important class of synthetic 2D nanomaterials. The interactions between boron and substrates are critical to understand the growth mechanisms of borophenes. Here, we report an investigation of copper-boron interactions in the Cu 2 B 8 − bimetallic cluster using photoelectron spectroscopy and quantum chemical calculations. Well-resolved photoelectron spectra are obtained at several photon energies and are combined with theoretical calculations to elucidate the structures and bonding of Cu 2 B 8 − . Global minimum searches reveal that Cu 2 B 8 − consists of a Cu 2 dimer atop a B 8 molecular wheel with a long Cu–Cu bond length close to that in Cu 2 + . Chemical bonding analyses indicate that there is clear charge transfer from Cu 2 to B 8 , and the Cu 2 B 8 − cluster can be viewed as a [Cu 2 + ]-borozene complex, [Cu 2 + ][B 8 2– ]. In the neutral cluster, no Cu–Cu bond exists and Cu 2 B 8 consists of two Cu + centers interacting with doubly aromatic B 8 2− borozene. The charge transfer interactions between Cu and boron in the Cu 2 B 8 − cluster are analogous to charge transfer from the copper substrate to the first borophene layer recently reported to be critical in the growth of bilayer borophenes on a Cu(111) substrate. 
    more » « less
  4. Abstract

    The structure and bonding of a Pr‐doped boron cluster (PrB7) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7. Global minimum searches and comparison between experiment and theory show that PrB7has a half‐sandwich structure with C6vsymmetry. Chemical bonding analyses show that PrB7can be viewed as a PrII7‐B73−] complex with three unpaired electrons, corresponding to a Pr (4f26s1) open‐shell configuration. Upon detachment of the 6s electron, the neutral PrB7cluster is a highly stable PrIII7‐B73−] complex with Pr in its favorite +3 oxidation state. The B73−ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII7‐B73−] complexes.

     
    more » « less
  5. null (Ed.)
    The green compound poly[(tetrahydrofuran)tris[μ-η 5 :η 5 -1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)], [CsYb(C 8 H 13 Si) 3 (C 4 H 8 O)] n or [(THF)Cs(μ-η 5 :η 5 -Cp′) 3 Yb II ] n was synthesized by reduction of a red THF solution of (C 5 H 4 SiMe 3 ) 3 Yb III with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexagons with alternating Cs I and Yb II ions at the vertices and cyclopentadienyl groups bridging each edge. This, based off the six-electron cyclopentadienyl rings occupying three coordination positions, gives a formally nine-coordinate tris(cyclopentadienyl) coordination environment to Yb and the Cs is ten-coordinate due to the three cyclopentadienyl rings and a coordinated molecule of THF. The complex comprises layers of Cs 3 Yb 3 hexagons with THF ligands and Me 3 Si groups in between the layers. The Yb—C metrical parameters are consistent with a 4 f 14 Yb II electron configuration. 
    more » « less