- Award ID(s):
- 1658987
- NSF-PAR ID:
- 10191106
- Date Published:
- Journal Name:
- PEARC '20: Practice and Experience in Advanced Research Computing
- Page Range / eLocation ID:
- 327 to 332
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Science gateways, also known as advanced web portals, virtual research environments, and more, have changed the face of research and scholarship over the last two decades. Scholars world-wide leverage science gateways for a wide variety of individual research endeavors spanning diverse scientific fields. Evaluating the value of a given gateway to its constituent community is critical in obtaining the financial and human resources to sustain gateway operations. Accordingly, those who run gateways must routinely measure and communicate impact. Just as gateways are varied, their success metrics vary as well. In this survey paper, a variety of different gateways briefly share their approaches.more » « less
-
Science gateways, also known as advanced web portals, virtual research environments, and more, have changed the face of research and scholarship over the last two decades. Scholars world-wide leverage science gateways for a wide variety of individual research endeavors spanning diverse scientific fields. Evaluating the value of a given gateway to its constituent community is critical in obtaining the financial and human resources to sustain gateway operations. Accordingly, those who run gateways must routinely measure and communicate impact. Just as gateways are varied, their success metrics vary as well. In this survey paper, a variety of different gateways briefly share their approaches.more » « less
-
Science gateways, also known as advanced web portals, virtual research environments, and more, have changed the face of research and scholarship over the last two decades. Scholars world-wide leverage science gateways for a wide variety of individual research endeavors spanning diverse scientific fields. Evaluating the value of a given gateway to its constituent community is critical in obtaining the financial and human resources to sustain gateway operations. Accordingly, those who run gateways must routinely measure and communicate impact. Just as gateways are varied, their success metrics vary as well. In this survey paper, a variety of different gateways briefly share their approaches.more » « less
-
Science gateways have gained a lot of traction in the last twenty years, as evidenced by projects such as the Science Gateways Community Institute (SGCI) and the Center of Excellence on Science Gateways (SGX3) in the US, The Australian Research Data Commons (ARDC) and its platforms in Australia, and the projects around Virtual Research Environments in Europe. A few mature frameworks have evolved with their different strengths and foci and have been taken up by a larger community such as Hubzero, Tapis, and Galaxy. However, even when gateways are built on successful frameworks, they continue to face the challenges of ongoing maintenance costs and how to meet the ever-expanding needs of the community they serve with enhanced features. It is not uncommon that gateways with compelling use cases are nonetheless unable to get past the prototype phase and become a full production service, or if they do, they don't survive more than a couple of years. While there is no guaranteed pathway to success, it seems likely that for any gateway there is a need for a strong community and/or solid funding streams to create and sustain its success. With over twenty years of examples to draw from, we present in this paper ten factors common to successful and enduring gateways that effectively serve as best practices for any new or developing gateway.more » « less
-
Summary Scholars worldwide leverage science gateways/virtual research environments (VREs) for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this article, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of, for example, their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next‐generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE‐IG) of the Research Data Alliance. Thus, community‐driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations.