skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FETCH: A deep-learning based classifier for fast transient classification
ABSTRACT With the upcoming commensal surveys for Fast Radio Bursts (FRBs), and their high candidate rate, usage of machine learning algorithms for candidate classification is a necessity. Such algorithms will also play a pivotal role in sending real-time triggers for prompt follow-ups with other instruments. In this paper, we have used the technique of Transfer Learning to train the state-of-the-art deep neural networks for classification of FRB and Radio Frequency Interference (RFI) candidates. These are convolutional neural networks which work on radio frequency-time and dispersion measure-time images as the inputs. We trained these networks using simulated FRBs and real RFI candidates from telescopes at the Green Bank Observatory. We present 11 deep learning models, each with an accuracy and recall above 99.5 per cent on our test data set comprising of real RFI and pulsar candidates. As we demonstrate, these algorithms are telescope and frequency agnostic and are able to detect all FRBs with signal-to-noise ratios above 10 in ASKAP and Parkes data. We also provide an open-source python package fetch (Fast Extragalactic Transient Candidate Hunter) for classification of candidates, using our models. Using fetch, these models can be deployed along with any commensal search pipeline for real-time candidate classification.  more » « less
Award ID(s):
1714897
PAR ID:
10191190
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1661 to 1674
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present four new fast radio bursts discovered in a search of the Parkes 70-cm pulsar survey data archive for dispersed single pulses and bursts. We searched dispersion measures (DMs) ranging between 0 and 5000 pc cm−3 with the HEIMDALL and FETCH detection and classification algorithms. All four of the fast radio bursts (FRBs) discovered have significantly larger widths (>50 ms) than almost all of the FRBs detected and catalogued to date. The large pulse widths are not dominated by interstellar scattering or dispersive smearing within channels. One of the FRBs has a DM of 3338 pc cm3, the largest measured for any FRB to date. These are also the first FRBs detected by any radio telescope so far, predating the Lorimer Burst by almost a decade. Our results suggest that pulsar survey archives remain important sources of previously undetected FRBs and that searches for FRBs on time-scales extending beyond ∼100 ms may reveal the presence of a larger population of wide-pulse FRBs. 
    more » « less
  2. Abstract Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known “ground truth” dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6× 105 HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and F2 score of 0.75 as applied to our HERA-67 observations. 
    more » « less
  3. ABSTRACT We conducted a drift-scan observation campaign using the 305-m Arecibo telescope in 2020 January and March when the observatory was temporarily closed during the intense earthquakes and the initial outbreak of the COVID-19 pandemic, respectively. The primary objective of the survey was to search for fast radio transients, including fast radio bursts (FRBs) and rotating radio transients (RRATs). We used the seven-beam ALFA receiver to observe different sections of the sky within the declination region ∼(10°–20°) on 23 nights and collected 160 h of data in total. We searched our data for single-pulse transients, of covering up to a maximum dispersion measure of 11 000 pc cm−3 at which the dispersion delay across the entire bandwidth is equal to the 13-s transit length of our observations. The analysis produced more than 18 million candidates. Machine learning techniques sorted the radio frequency interference and possibly astrophysical candidates, allowing us to visually inspect and confirm the candidate transients. We found no evidence for new astrophysical transients in our data. We also searched for emission from repeated transient signals, but found no evidence for such sources. We detected single pulses from two known pulsars in our observations and their measured flux densities are consistent with the expected values. Based on our observations and sensitivity, we estimated the upper limit for the FRB rate to be <2.8 × 105 sky−1 d−1 above a fluence of 0.16 Jy ms at 1.4 GHz, which is consistent with the rates from other telescopes and surveys. 
    more » « less
  4. Abstract Radio-frequency interference (RFI) is becoming an increasingly significant problem for most radio telescopes. Working with Green Bank Telescope data from PSR J1730+0747 in the form of complex-valued channelized voltages and their respective high-resolution power spectral densities, we evaluate a variety of statistical measures to characterize RFI. As a baseline for performance comparison, we use median absolute deviation (MAD) in complex channelized voltage data and spectral kurtosis (SK) in power spectral density data to characterize and filter out RFI. From a new perspective, we implement the Shapiro–Wilks (SW) test for normality and two information theoretical measures, spectral entropy (SE) and spectral relative entropy (SRE), and apply them to mitigate RFI. The baseline RFI mitigation algorithms are compared against our novel RFI detection algorithms to determine how effective and robust the performance is. Except for MAD, we find significant improvements in signal-to-noise ratio through the application of SE, symmetrical SRE, asymmetrical SRE, SK, and SW. These algorithms also do a good job of characterizing broad-band RFI. Time- and frequency-variable RFI signals are best detected by SK and SW tests. 
    more » « less
  5. Passive Remote Sensing services are indispensable in modern society because of the applications related to climate studies and earth science. Among those, NASA’s Soil Moisture Active and Passive (SMAP) mission provides an essential climate variable such as the moisture content of the soil by using microwave radiation within protected band over 1400-1427 MHz. However, because of the increasing active wireless technologies such as Internet of Things (IoT), unmanned aerial vehicles (UAV), and 5G wireless communication, the SMAP’s passive observations are expected to experience an increasing number of Radio Frequency Interference (RFI). RFI is a well-documented issue and SMAP has a ground processing unit dedicated to tackling this issue. However, advanced techniques are needed to tackle the increasing RFI problem for passive sensing systems and to jointly coexist communication and sensing systems. In this paper, we apply a deep learning approach where a novel Convolutional Neural Network (CNN) architecture for both RFI detection and mitigation is employed. SMAP Level 1A spectrogram of antenna counts and various moments data are used as the inputs to the deep learning architecture. We simulate different types of RFI sources such as pulsed, CW or wideband anthropogenic signals. We then use artificially corrupted SMAP Level 1B antenna measurements in conjunction with RFI labels to train the learning architecture. While the learned detection network classifies input spectrograms as RFI or no-RFI cases, the mitigation network reconstructs the RFI mitigated antenna temperature images. The proposed learning framework both takes advantage of the existing SMAP data and the simulated RFI scenarios. Future remote sensing systems such as radiometers will suffer an increasing RFI problem and spectrum sharing and techniques that will allow coexistance of sensing and communication systems will be utmost importance for both parties. RFI detection and mitigation will remain a prerequisite for these radiometers and the proposed deep learning approach has the potential to provide an additional perspective to existing solutions. We will present detailed analysis on the selected deep learning architecture, obtained RFI detection accuracy levels and RFI mitigation performance. 
    more » « less