skip to main content

Title: Near-contact grasping strategies from awkward poses: When simply closing your fingers is not enough *
Grasping a simple object from the side is easy --- unless the object is almost as big as the hand or space constraints require positioning the robot hand awkwardly with respect to the object. We show that humans --- when faced with this challenge --- adopt coordinated finger movements which enable them to successfully grasp objects even from these awkward poses. We also show that it is relatively straight forward to implement these strategies autonomously. Our human-studies approach asks participants to perform grasping task by either ``puppetteering'' a robotic manipulator that is identical~(geometrically and kinematically) to a popular underactuated robotic manipulator~(the Barrett hand), or using sliders to control the original Barrett hand. Unlike previous studies, this enables us to directly capture and compare human manipulation strategies with robotic ones. Our observation is that, while humans employ underactuation, how they use it is fundamentally different (and more effective) than that found in existing hardware.
Authors:
; ; ; ; ;
Award ID(s):
1911050
Publication Date:
NSF-PAR ID:
10191253
Journal Name:
International Conference on Intelligent Robots and Systems (IROS)
Page Range or eLocation-ID:
646 to 651
Sponsoring Org:
National Science Foundation
More Like this
  1. Grasping a simple object from the side is easy-unless the object is almost as big as the hand or space constraints require positioning the robot hand awkwardly with respect to the object. We show that humans-when faced with this challenge-adopt coordinated finger movements which enable them to successfully grasp objects even from these awkward poses. We also show that it is relatively straight forward to implement these strategies autonomously. Our human-studies approach asks participants to perform grasping task by either "puppetteering" a robotic manipulator that is identical (geometrically and kinematically) to a popular underactuated robotic manipulator (the Barrett hand), or using sliders to control the original Barrett hand. Unlike previous studies, this enables us to directly capture and compare human manipulation strategies with robotic ones. Our observation is that, while humans employ underactuation, how they use it is fundamentally different (and more effective) than that found in existing hardware.
  2. Although general purpose robotic manipulators are becoming more capable at manipulating various objects, their ability to manipulate millimeter-scale objects are usually limited. On the other hand, ultrasonic levitation devices have been shown to levitate a large range of small objects, from polystyrene balls to living organisms. By controlling the acoustic force fields, ultrasonic levitation devices can compensate for robot manipulator positioning uncertainty and control the grasping force exerted on the target object. The material agnostic nature of acoustic levitation devices and their ability to dexterously manipulate millimeter-scale objects make them appealing as a grasping mode for general purpose robots. In this work, we present an ultrasonic, contact-less manipulation device that can be attached to or picked up by any general purpose robotic arm, enabling millimeter-scale manipulation with little to no modification to the robot itself. This device is capable of performing the very first phase-controlled picking action on acoustically reflective surfaces. With the manipulator placed around the target object, the manipulator can grasp objects smaller in size than the robot's positioning uncertainty, trap the object to resist air currents during robot movement, and dexterously hold a small and fragile object, like a flower bud. Due to the contact-less nature ofmore »the ultrasound-based gripper, a camera positioned to look into the cylinder can inspect the object without occlusion, facilitating accurate visual feature extraction.« less
  3. Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In this work, we leveraged a potential energy–based whole-hand manipulation model, which does not depend on contact wrench modeling like traditional approaches, to design a robotic manipulator. Inspired by robotic caging grasps and the high levels of dexterity observed in human manipulation, a metric was developed and used in conjunction with the manipulation model to design a two-fingered dexterous hand, the Model W. This was accomplished by simulating all planar finger topologies composed of open kinematic chains of up to three serial revolute and prismatic joints, forming symmetric two-fingered hands, and evaluating their performance according to the metric. We present the best design, an unconventional robot hand capable of performing continuous object reorientation, as well as repeatedly alternating between power and pinch grasps—two contact-rich skills that have often eluded robotic hands—and we experimentally characterize the hand’s manipulation capability. This hand realizes manipulation motions reminiscent of thumb–index finger manipulative movement in humans, and its topology provides the foundation for a general-purpose dexterous robot hand.

  4. Robot manipulation and grasping mechanisms have received considerable attention in the recent past, leading to development of wide-range of industrial applications. This paper proposes the development of an autonomous robotic grasping system for object sorting application. RGB-D data is used by the robot for performing object detection, pose estimation, trajectory generation and object sorting tasks. The proposed approach can also handle grasping on certain objects chosen by users. Trained convolutional neural networks are used to perform object detection and determine the corresponding point cloud cluster of the object to be grasped. From the selected point cloud data, a grasp generator algorithm outputs potential grasps. A grasp filter then scores these potential grasps, and the highest-scored grasp will be chosen to execute on a real robot. A motion planner will generate collision-free trajectories to execute the chosen grasp. The experiments on AUBO robotic manipulator show the potentials of the proposed approach in the context of autonomous object sorting with robust and fast sorting performance.
  5. bot manipulation and grasping mechanisms have received considerable attention in the recent past, leading to development of wide-range of industrial applications. This paper proposes the development of an autonomous robotic grasping system for object sorting application. RGB-D data is used by the robot for performing object detection, pose estimation, trajectory generation and object sorting tasks. The proposed approach can also handle grasping on certain objects chosen by users. Trained convolutional neural networks are used to perform object detection and determine the corresponding point cloud cluster of the object to be grasped. From the selected point cloud data, a grasp generator algorithm outputs potential grasps. A grasp filter then scores these potential grasps, and the highest-scored grasp will be chosen to execute on a real robot. A motion planner will generate collision-free trajectories to execute the chosen grasp. The experiments on AUBO robotic manipulator show the potentials of the proposed approach in the context of autonomous object sorting with robust and fast sorting performance.