skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Segmented flow generator for serial crystallography at the European X-ray free electron laser
Abstract Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.  more » « less
Award ID(s):
1231306
PAR ID:
10191300
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The role of surface wetting properties and their impact on the performance of 3D printed microfluidic droplet generation devices for serial femtosecond crystallography (SFX) are reported. SFX is a novel crystallography method enabling structure determination of proteins at room temperature with atomic resolution using X-ray free-electron lasers (XFELs). In SFX, protein crystals in their mother liquor are delivered and intersected with a pulsed X-ray beam using a liquid jet injector. Owing to the pulsed nature of the X-ray beam, liquid jets tend to waste the vast majority of injected crystals, which this work aims to overcome with the delivery of aqueous protein crystal suspension droplets segmented by an oil phase. For this purpose, 3D printed droplet generators that can be easily customized for a variety of XFEL measurements have been developed. The surface properties, in particular the wetting properties of the resist materials compatible with the employed two-photon printing technology, have so far not been characterized extensively, but are crucial for stable droplet generation. This work investigates experimentally the effectiveness and the long-term stability of three different surface treatments on photoresist films and glass as models for our 3D printed droplet generator and the fused silica capillaries employed in the other fluidic components of an SFX experiment. Finally, the droplet generation performance of an assembly consisting of the 3D printed device and fused silica capillaries is examined. Stable and reproducible droplet generation was achieved with a fluorinated surface coating which also allowed for robust downstream droplet delivery. Experimental XFEL diffraction data of crystals formed from the large membrane protein complex photosystem I demonstrate the full compatibility of the new injection method with very fragile membrane protein crystals and show that successful droplet generation of crystal-laden aqueous droplets intersected by an oil phase correlates with increased crystal hit rates. 
    more » « less
  2. Abstract The world’s first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs. 
    more » « less
  3. Abstract Sample consumption for serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) remains a major limitation preventing broader use of this powerful technology in macromolecular crystallography. This drawback is exacerbated in the case of time-resolved (TR)-SFX experiments, where the amount of sample required per reaction time point is multiplied by the number of time points investigated. Thus, in order to reduce the limitation of sample consumption, here we demonstrate the implementation of segmented droplet generation in conjunction with a mix-and-inject approach for TR studies on NAD(P)H:quinone oxidoreductase 1 (NQO1). We present the design and application of mix-and-inject segmented droplet injectors for the Single Particles, Clusters, and Biomolecules & Serial Femtosecond Crystallography (SPB/SFX) instrument at the European XFEL (EuXFEL) with a synchronized droplet injection approach that allows liquid phase protein crystal injection. We carried out TR-crystallography experiments with this approach for a 305 ms and a 1190 ms time point in the reaction of NQO1 with its coenzyme NADH. With this successful TR-SFX approach, up to 97% of the sample has been conserved compared to continuous crystal suspension injection with a gas dynamic virtual nozzle. Furthermore, the obtained structural information for the reaction of NQO1 with NADH is an important part of the future elucidation of the reaction mechanism of this crucial therapeutic enzyme. 
    more » « less
  4. High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX. 
    more » « less
  5. Novel groundbreaking techniques, such as serial femtosecond crystallography (SFX), which utilizes X-ray free-electron lasers (XFELs), have led to impressive advances in the field of structural biology. However, educating the next generation of scientists on this complex, advanced, and continuously evolving field can be challenging. Gamification has been shown to be an effective strategy for engaging new learners and has a positive influence on knowledge acquisition, student satisfaction, and motivation. Here, we present an educational game, XFEL Crystal Blaster, aimed at increasing middle and high school students’ exposure to advanced topics in crystallography. This simple and accessible game is available on multiple platforms, is intuitive for gamers, and requires no prior knowledge of the game’s content. The assessment of students’ experiences with the game suggests that the XFEL Crystal Blaster game is likely to develop some introductory knowledge of XFELs and X-ray crystallography and increase interest in learning more about X-ray crystallography. Both of these outcomes are key to engaging students in the exploration of emerging scientific fields that are potential career pathways. 
    more » « less