skip to main content


Title: Self-limiting directional nanoparticle bonding governed by reaction stoichiometry

Nanoparticle clusters with molecular-like configurations are an emerging class of colloidal materials. Particles decorated with attractive surface patches acting as analogs of functional groups are used to assemble colloidal molecules (CMs); however, high-yield generation of patchy nanoparticles remains a challenge. We show that for nanoparticles capped with complementary reactive polymers, a stoichiometric reaction leads to reorganization of the uniform ligand shell and self-limiting nanoparticle bonding, whereas electrostatic repulsion between colloidal bonds governs CM symmetry. This mechanism enables high-yield CM generation and their programmable organization in hierarchical nanostructures. Our work bridges the gap between covalent bonding taking place at an atomic level and colloidal bonding occurring at the length scale two orders of magnitude larger and broadens the methods for nanomaterial fabrication.

 
more » « less
NSF-PAR ID:
10191434
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
369
Issue:
6509
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1369-1374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions. In this paper, we extend the atomistic simulations to short (hundreds of picoseconds to nanoseconds) laser pulses and focus our attention on the effect of the pulse duration on the mechanisms responsible for the generation of nanoparticles at the initial dynamic stage of laser ablation. Three distinct nanoparticle generation mechanisms operating at different stages of the ablation process and in different parts of the emerging cavitation bubble are identified in the simulations. These mechanisms are (1) the formation of a thin transient metal layer at the interface between the ablation plume and water environment followed by its decomposition into large molten nanoparticles, (2) the nucleation, growth, and rapid cooling/solidification of small nanoparticles at the very front of the emerging cavitation bubble, above the transient interfacial metal layer, and (3) the spinodal decomposition of a part of the ablation plume located below the transient interfacial layer, leading to the formation of a large population of nanoparticles growing in a high-temperature environment through inter-particle collisions and coalescence. The coexistence of the three distinct mechanisms of the nanoparticle formation at the initial stage of the ablation process can be related to the broad nanoparticle size distributions commonly observed in nanosecond PLAL experiments. The strong dependence of the nanoparticle cooling and solidification rates on the location within the low-density metal–water mixing region has important implications for the long-term evolution of the nanoparticle size distribution, as well as for the ability to quench the nanoparticle growth or dope them by adding surface-active agents or doping elements to the liquid environment. 
    more » « less
  2. A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (−46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (−8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10−9) and acoustic mass density (313.3 ± 63.3 ng cm–2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact. 
    more » « less
  3. Abstract

    Self‐assembly of nanomaterials to yield a wide diversity of high‐order structures, materials, and devices promises new opportunities for various technological applications. Herein, we report that crack formation can be effectively harnessed by elaborately restricting the drying of colloidal suspension using a flow‐enabled self‐assembly (FESA) strategy to yield large‐area periodic cracks (i.e., microchannels) with tunable spacing. These uniform microchannels can be utilized as a template to guide the assembly of Au nanoparticles, forming intriguing nanoparticle threads. This strategy is simple and convenient. As such, it opens the possibility for large‐scale manufacturing of crack‐based or crack‐derived assemblies and materials for use in optics, electronics, optoelectronics, photonics, magnetic device, nanotechnology, and biotechnology.

     
    more » « less
  4. Abstract

    The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure.

     
    more » « less
  5. null (Ed.)
    Projected population increases over the next 30 years have elevated the need to develop novel agricultural technologies to dramatically increase crop yield, particularly under conditions of high pathogen pressure. In this study, silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon (Citrullus lanatus) to enhance plant growth while mitigating development of the Fusarium wilt disease caused by Fusarium oxysporum f. sp. niveum. The hydrolysis rates of the silica particles were controlled by the degree of condensation or the catalytic activity of aminosilane. The results demonstrate that the plants treated with fast dissolving NPs maintained or increased biomass whereas the particle-free plants had a 34% decrease in biomass. Further, higher silicon concentrations were measured in root parts when the plants were treated with fast dissolving NPs, indicating effective silicic acid delivery. In a follow-up field study over 2.5 months, the fast dissolving NP treatment enhanced fruit yield by 81.5% in comparison to untreated plants. These findings indicate that the colloidal behavior of designed nanoparticles can be critical to nanoparticle-plant interactions, leading to disease suppression and plant health as part of a novel strategy for nanoenabled agriculture. 
    more » « less