skip to main content

Title: Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish

Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the speciesSepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN⋅m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, more » stiff, and damage-tolerant cellular ceramics.

« less
Authors:
; ; ; ; ; ;
Award ID(s):
1825646
Publication Date:
NSF-PAR ID:
10191459
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
38
Page Range or eLocation-ID:
p. 23450-23459
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Due to their low damage tolerance, engineering ceramic foams are often limited to non-structural usages. In this work, we report that stereom, a bioceramic cellular solid (relative density, 0.2–0.4) commonly found in the mineralized skeletal elements of echinoderms (e.g., sea urchin spines), achieves simultaneous high relative strength which approaches the Suquet bound and remarkable energy absorption capability (ca. 17.7 kJ kg−1) through its unique bicontinuous open-cell foam-like microstructure. The high strength is due to the ultra-low stress concentrations within the stereom during loading, resulted from their defect-free cellular morphologies with near-constant surface mean curvatures and negative Gaussian curvatures. Furthermore, the combination of bending-induced microfracture of branches and subsequent local jamming of fractured fragments facilitated by small throat openings in stereom leads to the progressive formation and growth of damage bands with significant microscopic densification of fragments, and consequently, contributes to stereom’s exceptionally high damage tolerance.

  2. Abstract Carbon micro/nanolattice materials, defined as three-dimensional (3D) architected metamaterials made of micro/nanoscale carbon constituents, have demonstrated exceptional mechanical properties, including ultrahigh specific strength, stiffness, and extensive deformability through experiments and simulations. The ductility of these carbon micro/nanolattices is also important for robust performance. In this work, we present a novel design of using reversible snap-through instability to engineer energy dissipation in 3D graphene nanolattices. Inspired by the shell structure of flexible straws, we construct a type of graphene counterpart via topological design and demonstrate its associated snap-through instability through molecular dynamics (MD) simulations. One-dimensional (1D) straw-like carbon nanotube (SCNT) and 3D graphene nanolattices are constructed from a unit cell. These graphene nanolattices possess multiple stable states and are elastically reconfigurable. A theoretical model of the 1D bi-stable element chain is adopted to understand the collective deformation behavior of the nanolattice. Reversible pseudoplastic behavior with a finite hysteresis loop is predicted and further validated via MD. Enhanced by these novel energy dissipation mechanisms, the 3D graphene nanolattice shows good tolerance of crack-like flaws and is predicted to approach a specific energy dissipation of 233 kJ/kg in a loading cycle with no permanent damage (one order higher than the energy absorbedmore »by carbon steel at failure, 16 kJ/kg). This study provides a novel mechanism for 3D carbon nanolattice to dissipate energy with no accumulative damage and improve resistance to fracture, broadening the promising application of 3D carbon in energy absorption and programmable materials.« less
  3. Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps ofVibrio choleraebiofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm–environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach aremore »generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment.

    « less
  4. de Vries, Ronald P. (Ed.)
    ABSTRACT Septation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (Δ sepH , Δ bud3 , Δ bud4 , and Δ rho4 ) and six antifungal compounds. Three of these compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors which activate the cell wall integrity signaling pathway (CWIS), while the three others (cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular processes not explicitly related to the cell wall. Our results show that deficiencies in septation lead to fungi which are more susceptible to cell wall-perturbing compounds but are no more susceptible to other antifungal compounds than a control. This implies that septa play a critical role in surviving cell wall stress. IMPORTANCE The ability to compartmentalize potentially lethal damage via septation appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress. However, it remains unknown whether this mechanism is deployed in response tomore »all forms of stress or is limited to specific perturbations. Our results support the latter possibility by showing that presence of septa promotes survival in response to cell wall damage but plays no apparent role in coping with other unrelated forms of stress. Given that cell wall damage is a primary effect caused by exposure to the echinocandin class of antifungal agents, our results emphasize the important role that septa might play in enabling resistance to these drugs. Accordingly, the inhibition of septum formation could conceivably represent an attractive approach to potentiating the effects of echinocandins and mitigating resistance in human fungal pathogens.« less
  5. Elastin is a primary structural protein in the arterial wall that contributes to vascular mechanical properties and degrades with aging. Aging is associated with arterial stiffening and an increase in blood pressure. There is evidence that arterial aging follows different timelines with sex. Our objective was to investigate how elastin content affects arterial remodeling in male and female mice with aging. We used male and female wild-type ( Eln +/+ ) and elastin heterozygous ( Eln +/− ) mice at 6, 12, and 24 mo of age and measured their blood pressure and arterial morphology, wall structure, protein content, circumferential stress, stretch ratio, and stiffness. Two arteries were used with varying contents of elastin: the left common carotid and ascending aorta. We show that Eln +/− arteries start at a different homeostatic set point for circumferential wall stress, stretch, and material stiffness but show similar increases with aging to Eln +/+ mice. With aging, structural stiffness is greatly increased, while material stiffness and circumferential stress are only slightly increased, highlighting the importance of maintaining these homeostatic values. Circumferential stretch shows the smallest change with age and may be important for controlling cellular phenotype. Independent sex differences are mostly associated withmore »males being larger than females; however, many of the measured factors show age × sex and/or genotype × sex interactions, indicating that males and females follow different cardiovascular remodeling timelines with aging and are differentially affected by reduced elastin content. NEW & NOTEWORTHY A comprehensive study on arterial mechanical behavior as a function of elastin content, aging, and sex in mice. Elastin haploinsufficient arteries start at a different homeostatic set point for mechanical parameters such as circumferential stress, stretch, and material stiffness. Structural stiffness of the arterial wall greatly increases with aging, as expected, but there are interactions between sex and aging for most of the mechanical parameters that are important to consider in future work.« less