skip to main content


Title: Road to Room-Temperature Superconductivity: Tc above 260 K in Lanthanum Superhydride under Pressure
The use of high pressure to realize superconductivity in the vicinity of room temperature has a long history, much of it focused on achieving this in hydrogen-rich materials. This paper provides a brief overview of the work presented at this May 2018 conference, together with background on motivation and techniques, the theoretical predictions of superconductivity in lanthanum hydride, and the subsequent experimental confirmation. Theoretical calculations using density-functional based structure-search methods combined with BCS-type models predicted a new class of dense, hydrogen-rich materials – superhydrides (MHx, with x > 6 and M selected rare earth elements) – with superconducting critical temperatures (Tc) in the vicinity of room-temperature at and above 200 GPa pressures. The existence of a series of these phases in the La-H system was subsequently confirmed experimentally, and techniques were developed for their syntheses and characterization, including measurements of structural and transport properties, at megabar pressures. Four-probe electrical transport measurements of a cubic phase identified as LaH10 display signatures of superconductivity at temperatures above 260 K near 200 GPa. The results are supported by pseudo-four probe conductivity measurements, critical current determinations, low-temperature x-ray diffraction, and magnetic susceptibility measurements. The measured high Tc is in excellent agreement with the original calculations. The experiments also reveal additional superconducting phases with Tc between 150 K and above 260 K. This effort highlights the novel physics in hydrogen-rich materials at high densities, the success of ‘materials by design’ in the discovery and creation of new materials, and the possibility of new classes of superconductors Tc‘s at and above room temperature.  more » « less
Award ID(s):
1809783
NSF-PAR ID:
10191665
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the International Symposium Superconductivity and Pressure: A Fruitful Relationship on the Road to Room Temperature Superconductivity. May, 21-22 - 2018. Madrid - Spain
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Since the discovery of superconductivity at ~ 200 K in H3S [1], similar or higher transition temperatures,Tcs, have been reported for various hydrogen-rich compounds under ultra-high pressures [2]. Superconductivity was experimentally proved by different methods, including electrical resistance, magnetic susceptibility, optical infrared, and nuclear resonant scattering measurements. The crystal structures of superconducting phases were determined by X-ray diffraction. Numerous electrical transport measurements demonstrate the typical behavior of a conventional phonon-mediated superconductor: zero resistance belowTc, shift ofTcto lower temperatures under external magnetic fields, and pronounced isotope effect. Remarkably, the results are in good agreement with the theoretical predictions, which describe superconductivity in hydrides within the framework of the conventional BCS theory. However, despite this acknowledgement, experimental evidences for the superconducting state in these compounds have recently been treated with criticism [3–7], which apparently stems from misunderstanding and misinterpretation of complicated experiments performed under very high pressures. Here, we describe in greater detail the experiments revealing high-temperature superconductivity in hydrides under high pressures. We show that the arguments against superconductivity [3–7] can be either refuted or explained. The experiments on the high-temperature superconductivity in hydrides clearly contradict the theory of hole superconductivity [8] and eliminate it [3].

     
    more » « less
  2. The search for room temperature superconductivity has accelerated in the last few years driven by experimentally accessible theoretical predictions that indicated alloying dense hydrogen with other elements could produce conventional superconductivity at high temperatures and pressures. These predictions helped inform the synthesis of simple binary hydrides that culminated in the discovery of the superhydride LaH 10 with a superconducting transition temperature T c of 260 K at 180 GPa. We have now successfully synthesized a metallic La-based superhydride with an initial T c of 294 K. When subjected to subsequent thermal excursions that promoted a chemical reaction to a higher order system, the T c onset was driven irreversibly to 556 K. X-ray characterization confirmed the formation of a distorted LaH 10 based backbone that suggests the formation of ternary or quaternary compounds with substitution at the La and/or H sites. The results provide evidence for hot superconductivity, aligning with recent predictions for higher order hydrides under pressure. 
    more » « less
  3. Abstract

    The discovery of superconductivity at 260 K in hydrogen-rich compounds like LaH10re-invigorated the quest for room temperature superconductivity. Here, we report the temperature dependence of the upper critical fieldsμ0Hc2(T) of superconducting H3S under a record-high combination of applied pressures up to 160 GPa and fields up to 65 T. We find thatHc2(T) displays a linear dependence on temperature over an extended range as found in multigap or in strongly-coupled superconductors, thus deviating from conventional Werthamer, Helfand, and Hohenberg (WHH) formalism. The best fit ofHc2(T) to the WHH formalism yields negligible values for the Maki parameterαand the spin–orbit scattering constantλSO. However,Hc2(T) is well-described by a model based on strong coupling superconductivity with a coupling constantλ~ 2. We conclude that H3S behaves as a strong-coupled orbital-limited superconductor over the entire range of temperatures and fields used for our measurements.

     
    more » « less
  4. - (Ed.)
    High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB2 during compression induces superconductivity above 50 GPa with a maximum super-conducting critical temperature, Tc of 17 K at 91 GPa. Upon further compression up to 187 GPa, the Tc gradually decreases. Theoretical calculations show that electron-phonon mediated super-conductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB2 (hP3, space group 191, prototype AlB2). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB2) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials. 
    more » « less
  5. Abstract Studies of molecular mixtures containing hydrogen sulfide (H 2 S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H 2 S and ammonia (NH 3 ) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H 2 S–NH 3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H 2 S) (NH 3 ) and (H 2 S) (NH 3 ) 4 , are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H 2 S) (NH 3 ) 4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron–phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H 2 S) (NH 3 ) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation. 
    more » « less