skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resilience of Complex Adaptive Systems: A Pedagogical Framework for Engineering Education and Research
Abstract The discourse on resilience, currently at the forefront of research and implementation in a wide variety of fields, is confusing because of its multi-disciplinary/spatial/temporal nature. Resilience analysis is a discipline that allows the assessment and enhancement of the coping and recovery behaviors of systems when subjected to short-lived high-impact external shocks leading to partial or complete failure. This paper, meant for pedagogical teaching and research formulation, starts by providing an overview of different aspects of resilience in general and then focuses on communities and regions that are complex adaptive systems (CAS) involving multiple engineered infrastructures providing essential services to local inhabitants and adapted to available natural resources and social requirements. Next, for objective analysis and assessment, it is proposed that resilience be characterized by four different quantifiable sub-attributes. This paper then describes the standard technocentric manner in which different temporal phases during and in the aftermath of disasters are generally visualized and analyzed, and discusses how these relate to reliability and risk analyses. Subsequently, two prevalent types of frameworks are described and representative literature reviewed: (i) those that aim at improving general resilience via soft methods such as subjective means (interviews, narratives) and census data, and (ii) those that are meant to enhance specific resilience under certain threat scenarios using hard/objective methods such as data-driven analysis and performance-predictive modeling methods, akin to resource allocation problems in operations research. Finally, the need for research into an integrated framework is urged; one that could potentially combine the strengths of both approaches.  more » « less
Award ID(s):
1832678
PAR ID:
10191726
Author(s) / Creator(s):
Date Published:
Journal Name:
ASME Journal of Engineering for Sustainable Buildings and Cities
Volume:
1
Issue:
2
ISSN:
2642-6641
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrastructure resilience plays an important role in mitigating the negative impacts of natural hazards by ensuring the continued accessibility and availability of resources. Increasingly, equity is recognized as essential for infrastructure resilience. Yet, after about a decade of research on equity in infrastructure resilience, what is missing is a systematic overview of the state of the art and a research agenda across different infrastructures and hazards. To address this gap, this paper presents a systematic review of equity literature on infrastructure resilience in relation to natural hazard events. In our systematic review of 99 studies, we followed an 8-dimensional assessment framework that recognizes 4 equity definitions including distributional-demographic, distributional-spatial, procedural, and capacity equity. Significant findings show that (1) the majority of studies found were located in the US, (2) interest in equity in infrastructure resilience has been exponentially rising, (3) most data collection methods used descriptive and open-data, particularly with none of the non-US studies using human mobility data, (4) limited quantitative studies used non-linear analysis such as agent-based modeling and gravity networks, (5) distributional equity is mostly studied through disruptions in power, water, and transportation caused by flooding and tropical cyclones, and (6) other equity aspects, such as procedural equity, remain understudied. We propose that future research directions could quantify the social costs of infrastructure resilience and advocate a better integration of equity into resilience decision-making. This study fills a critical gap in how equity considerations can be integrated into infrastructure resilience against natural hazards, providing a comprehensive overview of the field and developing future research directions to enhance societal outcomes during and after disasters. As such, this paper is meant to inform and inspire researchers, engineers, and community leaders to understand the equity implications of their work and to embed equity at the heart of infrastructure resilience plans. 
    more » « less
  2. The 2030 Global Sustainable Development Agenda of United Nations highlighted the critical importance of understanding the integrated nature between enhancing infrastructure resilience and facilitating social equity. Social equity is defined as equal opportunities provided to different people by infrastructure. It addresses disparities and unequal distribution of goods, services, and amenities. Infrastructure resilience is defined as the ability of infrastructure to withstand, adapt, and quickly recover from disasters. Existing research shows that infrastructure resilience and social equity are closely related to each other. However, there is a lack of research that explicitly understands the complex relationships between infrastructure resilience and social equity. To address this gap, this study aims to examine such interrelationships using social media data. Social media data is increasingly being used by researchers and proven to be a reliable source of valuable information for understanding human activities and behaviors in a disaster setting. The spatiotemporal distribution of disaster-related messages helps with real-time and quick assessment of the impact of disasters on infrastructure and human society across different regions. Using social media data also offers the advantages of saving time and cost, compared to other traditional data collection methods. As a first step of this study, this paper presents our work on collecting and analyzing the Twitter activities during 2018 Hurricane Michael in disaster-affected counties of Florida Panhandle area. The collected Twitter data was organized based on the geolocations of affected counties and was compared against the infrastructure resilience and social equity data of the affected counties. The results of the analysis indicate that (1) Twitter activities can be used as an important indicator of infrastructure resilience conditions, (2) socially vulnerable populations are not as active as general populations on social media in a disaster setting, and (3) vulnerable populations require a longer time for disaster recovery. 
    more » « less
  3. Abstract Advances in machine learning (ML) have led to applications in safety‐critical domains, including security, defense, and healthcare. These ML models are confronted with dynamically changing and actively hostile conditions characteristic of real‐world applications, requiring systems incorporating ML to be reliable and resilient. Many studies propose techniques to improve the robustness of ML algorithms. However, fewer consider quantitative techniques to assess changes in the reliability and resilience of these systems over time. To address this gap, this study demonstrates how to collect relevant data during the training and testing of ML suitable for the application of software reliability, with and without covariates, and resilience models and the subsequent interpretation of these analyses. The proposed approach promotes quantitative risk assessment of ML technologies, providing the ability to track and predict degradation and improvement in the ML model performance and assisting ML and system engineers with an objective approach to compare the relative effectiveness of alternative training and testing methods. The approach is illustrated in the context of an image recognition model, which is subjected to two generative adversarial attacks and then iteratively retrained to improve the system's performance. Our results indicate that software reliability models incorporating covariates characterized the misclassification discovery process more accurately than models without covariates. Moreover, the resilience model based on multiple linear regression incorporating interactions between covariates tracks and predicts degradation and recovery of performance best. Thus, software reliability and resilience models offer rigorous quantitative assurance methods for ML‐enabled systems and processes. 
    more » « less
  4. Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host’s responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade. 
    more » « less
  5. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    There is a growing community of researchers at the intersection of data mining, AI, and computing education research. The objective of the CSEDM workshop is to facilitate a discussion among this research community, with a focus on how data mining can be uniquely applied in computing education research. For example, what new techniques are needed to analyze program code and CS log data? How do results from CS education inform our analysis of this data? The workshop is meant to be an interdisciplinary event at the intersection of EDM and Computing Education Research. Researchers, faculty, and students are encouraged to share their AI- and data-driven approaches, methodologies, and experiences where data transforms how students learn Computer Science (CS) skills. This full-day hybrid workshop will feature paper presentations and discussions to promote collaboration. 
    more » « less