skip to main content


Title: Synergistic computational and experimental discovery of novel magnetic materials
New magnetic materials for energy and information-processing applications are of paramount importance in view of significant global challenges in environmental and information security. The discovery and design of materials requires efficient computational and experimental approaches for high throughput and efficiency. When increasingly powerful computational techniques are combined with special non-equilibrium fabrication methods, the search can uncover metastable compounds with desired magnetic properties. Here we review recent results on novel Fe-, Co- and Mn-rich magnetic compounds with high magnetocrystalline anisotropy, saturation magnetization, and Curie temperature created by combining experiments, adaptive genetic algorithm searches, and advanced electronic-structure computational methods. We discuss structural and magnetic properties of such materials including Co– and/or Fe–X compounds (X = N, Si, Sn, Zr, Hf, Y, C, S, Ti, or Mn), and their prospects for practical applications.  more » « less
Award ID(s):
1729202 1729288 1729677
NSF-PAR ID:
10191738
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
6
ISSN:
2058-9689
Page Range / eLocation ID:
1098 to 1117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co–N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co–N compounds with favorable magnetic properties including hexagonal Co 3 N nanoparticles with a high saturation magnetic polarization ( J s = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy ( K 1 = 1.01 MJ m −3 or 10.1 Mergs per cm 3 ). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies. 
    more » « less
  2. Binary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.

     
    more » « less
  3. Abstract We have carried out a combined theoretical and experimental investigation of FeCrVAl, and the effect of Mn and Co doping on its structural, magnetic, and electronic band properties. Our first principles calculations indicate that FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl exhibit nearly perfect spin polarization, which may be further enhanced by mechanical strain. At the same time, FeCrV 0.5 Mn 0.5 Al and FeCrV 0.5 Co 0.5 Al exhibit a relatively small value of spin polarization, making them less attractive for practical applications. Using arc melting and high vacuum annealing, we synthesized three compounds FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl, which are predicted to exhibit high spin polarization. The room temperature x-ray diffraction patterns of all samples are fitted with full B2 type disorder with a small amount of FeO 2 secondary phase. All samples show very small saturation magnetizations at room temperature. The thermomagnetic curves M(T) of FeCrVAl and FeCr 0.5 Co 0.5 VAl are similar to that of a paramagnetic material, whereas that of FeCr 0.5 Mn 0.5 VAl indicates ferrimagnetic behavior with the Curie temperature of 135 K. Our findings may be of interest for researchers working on Heusler compounds for spin-based electronic applications. 
    more » « less
  4. We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials. 
    more » « less
  5. Abstract

    A computational search for stable structures among both α and β phases of ternary ATB4borides (A= Mg, Ca, Sr, Ba, Al, Ga, and Zn,Tis3dor4dtransition elements) has been performed. We found that α-ATB4compounds withA= Mg, Ca, Al, andT = V, Cr, Mn, Fe, Ni, and Co form a family of structurally stable or almost stable materials. These systems are metallic in non-magnetic states and characterized by the formation of the localized molecular-like state of3dtransition metal atom dimers, which leads to the appearance of numerous Van Hove singularities in the electronic spectrum. The closeness of such singularities to the Fermi level can be easily tuned by electron doping. For the atoms in the middle of the3drow (Cr, Mn, and Fe), these singularities led to magnetic instabilities and magnetic ground states with a weakly metallic or semiconducting nature. Such states appear as non-trivial coexistence of the different spin ladders formed by magnetic dimers of3delements. These magnetic states can be characterized as an analog of the spin glass state. Experimental attempts to produce MgFeB4and associated challenges are discussed, and promising directions for further synthetic studies are formulated.

     
    more » « less