skip to main content


Title: Accounting for Teacher Labor Markets and Student Segregation in Analyses of Teacher Quality Gaps
Studies show that historically underserved students are disproportionately assigned to less qualified and effective teachers, leading to a “teacher quality gap.” Past analyses decompose this gap to determine whether inequitable access is driven by teacher and student sorting across and within schools. These sorting mechanisms have divergent policy implications related to school finance, student desegregation, teacher recruitment, and classroom assignment. I argue that analyses of the teacher quality gap that consider how teachers and students are sorted across labor markets offer additional policy guidance. Using statewide data from Texas, I show that teacher quality gaps are driven by sorting across school districts within the same labor market, but this finding differs depending on how “teacher quality” is defined.  more » « less
Award ID(s):
1945937 2017950
NSF-PAR ID:
10191902
Author(s) / Creator(s):
Date Published:
Journal Name:
Educational Researcher
Volume:
49
Issue:
6
ISSN:
0013-189X
Page Range / eLocation ID:
454 to 458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. Karunakaran, S. S. ; Higgins, A. (Ed.)
    The critical role of teachers in supporting student engagement with reasoning and proving has long been recognized (Nardi & Knuth, 2017; NCTM, 2014). While some studies examined how prospective secondary teachers (PSTs) develop dispositions and teaching practices that promote student engagement with reasoning and proving (e.g., Buchbinder & McCrone, 2020; Conner, 2007), very little is known about long-term development of proof-related practices of beginning teachers and what factors affect this development (Stylianides et al., 2017). During the supervised teaching experiences, interns often encounter tensions between balancing their commitments to the university and cooperating teacher, while also developing their own teaching styles (Bieda et al., 2015; Smagorinsky et al., 2004; Wang et al., 2008). Our study examines how sociocultural contexts of the teacher preparation program and of the internship school, supported or inhibited proof-related teaching practices of beginning secondary mathematics teachers. In particular, this study aims to understand the observed gap between proof-related teaching practices of one such teacher, Olive, in two settings: as a PST in a capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 2020) and as an intern in a high-school classroom. We utilize activity theory (Leont’ev, 1979) and Engeström’s (1987) model of an activity system to examine how the various components of the system: teacher (subject), teaching (object), the tasks (tools), the curriculum and the expected teaching style (rules), the cooperating teacher (community) and their involvement during the teaching (division of labor) interact with each other and affect the opportunities provided to students to engage with reasoning and proving (outcome). The analysis of four lessons from each setting, lesson plans, reflections and interviews, showed that as a PST, Olive engaged students with reasoning and proving through productive proof-related teaching practices and rich tasks that involved conjecturing, justifying, proving and evaluating arguments. In a sharp contrast, as an intern, Olive had to follow her school’s rigid curriculum and expectations, and to adhere to her cooperating teacher’s teaching style. As a result, in her lessons as an intern students received limited opportunities for reasoning and proving. Olive expressed dissatisfaction with this type of teaching and her desire to enact more proof-oriented practices. Our results show that the sociocultural components of the activity system (rules, community and division of labor), which were backgrounded in Olive’s teaching experience as a PST but prominent in her internship experience, influenced the outcome of engaging students with reasoning and proving. We discuss the importance of these sociocultural aspects as we examine how Olive navigated the tensions between the proof-related teaching practices she adopted in the capstone course and her teaching style during the internship. We highlight the importance of teacher educators considering the sociocultural aspects of teaching in supporting beginning teachers developing proof-related teaching practices. 
    more » « less
  3. In an era of high-stakes accountability and widespread calls for improved student performance in science, technology, engineering, and math (National Research Council, 2002), it is critical that we also focus on how to support and enhance teachers’ learning. Teachers have long been understood to play a key role in the performance of students (e.g., Nye, Konstantopoulos, & Hedges, 2004). Educational policymakers have become increasingly focused on “value-added” approaches to gauging teacher performance (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004), which attempt to directly link the contribution of individual teachers to their students’ subsequent test performance, in both the near and far term. We take the position that, no matter what one thinks about the current testing and evaluation regime, it makes sense to conduct research to improve our understanding of how to support teachers’ ongoing learning and efforts to improve their practice related to student outcomes. This paper reports on a study of teacher learning in a context that is especially apt in the current policy climate – how teachers learn to teach a curriculum associated with a recently-revised high stakes examination. In particular, we report early results from a study of high school teachers learning to teach the revised Advanced Placement Biology curriculum as they prepare students for a high-stakes examination. We examine the role of professional development in supporting teachers’ learning to use the revised Advanced Placement Biology curriculum and the relationship between teachers’ professional development choices and subsequent student performance on the Advanced Placement Biology examination. 
    more » « less
  4. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  5. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences. 
    more » « less