skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth
Award ID(s):
1838976
PAR ID:
10191911
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
Volume:
20
Issue:
3
ISSN:
1530-6984
Page Range / eLocation ID:
1614 to 1619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We define a canonical ensemble for a gravitational causal diamond by introducing an artificial York boundary inside the diamond with a fixed induced metric and temperature, and evaluate the partition function using a saddle point approximation. For Einstein gravity with zero cosmological constant there is no exact saddle with a horizon, however the portion of the Euclidean diamond enclosed by the boundary arises as an approximate saddle in the high-temperature regime, in which the saddle horizon approaches the boundary. This high-temperature partition function provides a statistical interpretation of the recent calculation of Banks, Draper and Farkas, in which the entropy of causal diamonds is recovered from a boundary term in the on-shell Euclidean action. In contrast, with a positive cosmological constant, as well as in Jackiw-Teitelboim gravity with or without a cosmological constant, an exact saddle exists with a finite boundary temperature, but in these cases the causal diamond is determined by the saddle rather than being selected a priori. 
    more » « less
  2. A twin boundary (TB) is a common low energy planar defect in crystals including those with the atomic diamond structure (C, Si, Ge, etc.). We study twins in a self-assembled soft matter block copolymer (BCP) supramolecular crystal having the double diamond (DD) structure, consisting of two translationally shifted, interpenetrating diamond networks of the minority polydimethyl siloxane block embedded in a polystyrene block matrix. The coherent, low energy, mirror-symmetric double tubular network twin has one minority block network with its nodes offset from the (222) TB plane, while nodes of the second network lie in the plane of the boundary. The offset network, although at a scale about a factor of 10 3 larger, has precisely the same geometry and symmetry as a (111) twin in atomic single diamond where the tetrahedral units spanning the TB retain nearly the same strut (bond) lengths and strut (bond) angles as in the normal unit cell. In DD, the second network undergoes a dramatic restructuring—the tetrahedral nodes transform into two new types of mirror-symmetric nodes (pentahedral and trihedral) which alternate and link to form a hexagonal mesh in the plane of the TB. The collective reorganization of the supramolecular packing highlights the hierarchical structure of ordered BCP phases and emphasizes the remarkable malleability of soft matter. 
    more » « less
  3. Abstract Diamond as a material has many unique properties. Its high optical dispersion, extraordinarily high mechanical strength, and unparalleled thermal conductivity have long made it a material of interest for applications such as high‐temperature electronics and as wear‐resistance coatings. More recently, diamond has emerged as a material with a wide range of applications in chemistry and biology. The high intrinsic stability of diamond, coupled with the ability to modify diamond surfaces with a wide range of inorganic, organic, and biological species via highly stable covalent linkages, provides a wealth of opportunity to couple diamond's chemical properties with its extraordinary physical properties. The practical utility of diamond has been greatly expanded in recent years through dramatic advances in the ability to produce diamond in bulk, thin film, and nanoparticle form, with controlled doping and purity at modest cost. These advances, together with diamond's highly stable and tunable surface chemistry with versatility of physical structure enable a wide range of emerging applications of interest to chemists, including quantum science, biomedicine, energy storage, and catalysis. Yet, to fully exploit the unique properties of diamond, some formidable chemical challenges lie ahead. We begin by reviewing some of the features of diamond that are of particular importance to the chemistry community. We aim to highlight some of the important applications where diamond chemistry plays a key role, identify some of the key observations, and outline some of the future directions and opportunities for diamond in the chemical world. 
    more » « less