skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals
Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning.  more » « less
Award ID(s):
1729887
PAR ID:
10192109
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Research
Volume:
35
Issue:
3
ISSN:
0884-2914
Page Range / eLocation ID:
217 to 241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Twinning is a major mechanism of plastic deformation in hexagonal close-packed (hcp) structures. However, a mechanistic understanding of twin nucleation and growth has yet to be established. This paper reviews the recent progress in the understanding of twinning in hcp materials—particularly the newly discovered phase transformation-mediated twinning mechanisms—in terms of crystallographical analysis, theoretical mechanics calculations, and numerical simulations. Moreover, the relationship between phase transformation-mediated twinning mechanisms and twinning dislocations are presented, forming a unified understanding of deformation twinning. Finally, this paper also reviews the recent studies on transformation twins that are formed in hcp martensite microstructures after various phase transformations, highlighting the critical role of the mechanical loading in engineering a transformation twin microstructure. 
    more » « less
  2. Application of polycrystalline hexagonal close packed (HCP) metals in engineering designs has been constrained by their anisotropic responses due to twinning and limited plasticity. In deformation, twins most often initiate at grain boundaries (GBs), and thicken and propagate across the grain. In this work, the GB twin embryos in Mg and Mg alloys, and the conditions that influence their propagation are investigated. Using a micromechanical crystal plasticity model, the role of embryo shape on the driving forces prevailing at the embryo boundaries that could support its expansion is studied. The modeled embryos are either planar, extending more in the shear direction than normal to the twin plane, or equiaxed. Results show that the thinner the embryo, the greater the driving forces for both thickening and forward propagation. Alloys with low prismatic-to-basal critical resolved shear stress (CRSS) ratios promote embryo thickening and large CRSS values for the slip mode that primarily accommodates the twin shear encourage propagation. The neighboring grains with orientations that enable local accommodation of the embryo twin shear by pyramidal slip promote forward propagation but have little effect on thickening. When two like embryos lie along the same GB, their paired interaction promotes forward propagation but hinders thickening. 
    more » « less
  3. null (Ed.)
    The mechanical response and microstructure evolution in a rolled AZ31B magnesium alloy were experimentally characterized using companion thin-walled tubular specimens under free-end monotonic torsion. The tubular specimens were made with their axes along the normal direction of the rolled magnesium plate. The shear stress-shear strain response shows a subtle sigmodal shape that is composed of four distinctive stages of strain hardening. Basal slips and tension twinning are operated throughout the shear deformation. Both tension twinning and compressing twinning are favored. Growth and interaction of tension twins with multiple variants lead to formation of twin-twin boundaries (TTBs). The collective hardening effects by twin boundary (TB) and TTB result in a unique rise of the strain hardening rate in Stage II and III. In addition to primary twins, tension-compression double twins and tension-compression-tension tertiary twins with detectable sizes are observed in the tension-twin favorable grains whereas compression-tension double twins are detected in the tension-twin unfavorable grains; all of which become more observable with the increasing shear strain. During Stage IV deformation where TTB formation exhausts, non-basal prismatic slips become more significant and are responsible for the progressive decrease in strain hardening rate in this stage. Swift effect, which is commonly observed in textured materials, is evidenced under free-end torsion. The origin of Swift effect is confirmed to be dislocation slips at a shear strain less than 5% but is predominantly due to tension twinning at a larger plastic strain. 
    more » « less
  4. Deformation twinning is a prevalent mode of plastic deformation in hexagonal close packed (HCP) magnesium. Twin domains are associated with significant lattice reorientation and localized shear. The theoretical misorientation angle for the most common 1012 tensile twin in magnesium is 86.3°. Through electron backscatter diffraction characterization of twinning microstructure, we show that the twin boundary misorientation at the twin tips is approximately 85°, and it is close to the theoretical value only along the central part of the twin. The variations in twin/matrix misorientation along the twin boundary control the twin thickening process by affecting the nucleation, glide of twinning partials, and migration of twinning facets. To understand this observation, we employ a 3D crystal plasticity model with explicit twinning. The model successfully captures the experimentally observed misorientation variation, and it reveals that the twin boundary misorientation variations are governed by the local plasticity that accommodates the characteristic twin shear. 
    more » « less
  5. The yield strength of a CrCoNiSi0.3 medium-entropy alloy is significantly increased from 450 MPa (quasi-static, 0.001 s−1) to 1600 MPa (at a strain rate of 5000 s−1) under dynamic tension, with a considerable ductility of 60%. The high strain-rate sensitivity (SRS) of strength and work hardening is obtained, and the strength SRS reaches 0.408. The dominant deformation mechanisms are abundant multiple-twinning, increasing fractions of deformation twins and phase transformation from face-centered-cubic to hexagonal-close-packed (HCP) phases with a strain rate. A universal dislocation-hardened constitutive model considering the evolution of the twin and HCP transformation is established to predict the flow stress and microstructure evolution. 
    more » « less