We present the results of a theoretical investigation of a dynamical system consisting of a particle self-propelling through a resonant interaction with its own quasi-monochromatic pilot-wave field. We rationalize two distinct mechanisms, arising in different regions of parameter space, that may lead to a wavelike statistical signature with the pilot-wavelength. First, resonant speed oscillations with the wavelength of the guiding wave may arise when the particle is perturbed from its steady self-propelling state. Second, a random-walk-like motion may set in when the decay rate of the pilot-wave field is sufficiently small. The implications for the emergent statistics in classical pilot-wave systems are discussed.
more »
« less
A hydrodynamic analog of Friedel oscillations
We present a macroscopic analog of an open quantum system, achieved with a classical pilot-wave system. Friedel oscillations are the angstrom-scale statistical signature of an impurity on a metal surface, concentric circular modulations in the probability density function of the surrounding electron sea. We consider a millimetric drop, propelled by its own wave field along the surface of a vibrating liquid bath, interacting with a submerged circular well. An ensemble of drop trajectories displays a statistical signature in the vicinity of the well that is strikingly similar to Friedel oscillations. The droplet trajectories reveal the dynamical roots of the emergent statistics. Our study elucidates a new mechanism for emergent quantum-like statistics in pilot-wave hydrodynamics and so suggests new directions for the nascent field of hydrodynamic quantum analogs.
more »
« less
- Award ID(s):
- 1727565
- PAR ID:
- 10192181
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 20
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaay9234
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a confined one-dimensional geometry and apply the dynamic mode decomposition (DMD) in order to characterize the evolution of the wave field as the bath’s vibrational acceleration is increased progressively. Dynamic mode decomposition provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of spatiotemporal data. Thus, DMD reduces the complex nonlinear interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD modes characterizing the wave field. In particular, it provides a low-dimensional characterization of the bifurcation structure of the pilot-wave physics, wherein the excitation and recruitment of additional modes in the linear superposition models the bifurcation sequence. This DMD characterization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave field and the droplet statistics allows us to characterize the evolution of the emergent statistics with increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical framework with the same basic structure as quantum mechanics, specifically a wave theory that predicts particle statistics.more » « less
-
Abstract With rapid progress in simulation of strongly interacting quantum Hamiltonians, the challenge in characterizing unknown phases becomes a bottleneck for scientific progress. We demonstrate that a Quantum-Classical hybrid approach (QuCl) of mining sampled projective snapshots with interpretable classical machine learning can unveil signatures of seemingly featureless quantum states. The Kitaev-Heisenberg model on a honeycomb lattice under external magnetic field presents an ideal system to test QuCl, where simulations have found an intermediate gapless phase (IGP) sandwiched between known phases, launching a debate over its elusive nature. We use the correlator convolutional neural network, trained on labeled projective snapshots, in conjunction with regularization path analysis to identify signatures of phases. We show that QuCl reproduces known features of established phases. Significantly, we also identify a signature of the IGP in the spin channel perpendicular to the field direction, which we interpret as a signature of Friedel oscillations of gapless spinons forming a Fermi surface. Our predictions can guide future experimental searches for spin liquids.more » « less
-
A millimetric droplet may bounce and self-propel on the surface of a vertically vibrating bath, where its horizontal “walking” motion is induced by repeated impacts with its accompanying Faraday wave field. For ergodic long-time dynamics, we derive the relationship between the droplet’s stationary statistical distribution and its mean wave field in a very general setting. We then focus on the case of a droplet subjected to a harmonic potential with its motion confined to a line. By analyzing the system’s periodic states, we reveal a number of dynamical regimes, including those characterized by stationary bouncing droplets trapped by the harmonic potential, periodic quantized oscillations, chaotic motion and wavelike statistics, and periodic wave-trapped droplet motion that may persist even in the absence of a central force. We demonstrate that as the vibrational forcing is increased progressively, the periodic oscillations become chaotic via the Ruelle-Takens-Newhouse route. We rationalize the role of the local pilot-wave structure on the resulting droplet motion, which is akin to a random walk. We characterize the emergence of wavelike statistics influenced by the effective potential that is induced by the mean Faraday wave field.more » « less
-
The Kapitza-Dirac effect is the diffraction of quantum particles by a standing wave of light. We here report an analogous phenomenon in pilot-wave hydrodynamics, wherein droplets walking across the surface of a vibrating liquid bath are deflected by a standing Faraday wave. We show that, in certain parameter regimes, the statistical distribution of the droplet deflection angles reveals a diffraction pattern reminiscent of that observed in the Kapitza-Dirac effect. Through experiments and simulations, we show that the diffraction pattern results from the complex interactions of the droplets with the standing wave. Our study highlights nonresonant effects associated with the detuning of the droplet bouncing and the bath vibration, which are shown to lead to drop speed variations and droplet sorting according to the droplet's phase of impact. We discuss the similarities and differences between our hydrodynamic system and the discrete and continuum interpretations of the Kapitza-Dirac effect, and introduce the notion of ponderomotive effects in pilot-wave hydrodynamics. Published by the American Physical Society2025more » « less
An official website of the United States government

