skip to main content

Title: Topological mechanics of knots and tangles
Knots play a fundamental role in the dynamics of biological and physical systems, from DNA to turbulent plasmas, as well as in climbing, weaving, sailing, and surgery. Despite having been studied for centuries, the subtle interplay between topology and mechanics in elastic knots remains poorly understood. Here, we combined optomechanical experiments with theory and simulations to analyze knotted fibers that change their color under mechanical deformations. Exploiting an analogy with long-range ferromagnetic spin systems, we identified simple topological counting rules to predict the relative mechanical stability of knots and tangles, in agreement with simulations and experiments for commonly used climbing and sailing bends. Our results highlight the importance of twist and writhe in unknotting processes, providing guidance for the control of systems with complex entanglements.
Authors:
; ; ;
Award ID(s):
1922321
Publication Date:
NSF-PAR ID:
10192288
Journal Name:
Science
Volume:
367
Issue:
6473
Page Range or eLocation-ID:
71 to 75
ISSN:
0036-8075
Sponsoring Org:
National Science Foundation
More Like this
  1. The creation of autonomous subgram microrobots capable of complex behaviors remains a grand challenge in robotics largely due to the lack of microactuators with high work densities and capable of using power sources with specific energies comparable to that of animal fat (38 megajoules per kilogram). Presently, the vast majority of microrobots are driven by electrically powered actuators; consequently, because of the low specific energies of batteries at small scales (below 1.8 megajoules per kilogram), almost all the subgram mobile robots capable of sustained operation remain tethered to external power sources through cables or electromagnetic fields. Here, we present RoBeetle, an 88-milligram insect-sized autonomous crawling robot powered by the catalytic combustion of methanol, a fuel with high specific energy (20 megajoules per kilogram). The design and physical realization of RoBeetle is the result of combining the notion of controllable NiTi-Pt–based catalytic artificial micromuscle with that of integrated millimeter-scale mechanical control mechanism (MCM). Through tethered experiments on several robotic prototypes and system characterization of the thermomechanical properties of their driving artificial muscles, we obtained the design parameters for the MCM that enabled RoBeetle to achieve autonomous crawling. To evaluate the functionality and performance of the robot, we conducted a series ofmore »locomotion tests: crawling under two different atmospheric conditions and on surfaces with different levels of roughness, climbing of inclines with different slopes, transportation of payloads, and outdoor locomotion.

    « less
  2. Understanding how knotted proteins fold is a challenging problem in biology. Researchers have proposed several models for their folding pathways, based on theory, simulations and experiments. The geometry of proteins with the same knot type can vary substantially and recent simulations reveal different folding behaviour for deeply and shallow knotted proteins. We analyse proteins forming open-ended trefoil knots by introducing a topologically inspired statistical metric that measures their entanglement. By looking directly at the geometry and topology of their native states, we are able to probe different folding pathways for such proteins. In particular, the folding pathway of shallow knotted carbonic anhydrases involves the creation of a double-looped structure, contrary to what has been observed for other knotted trefoil proteins. We validate this with Molecular Dynamics simulations. By leveraging the geometry and local symmetries of knotted proteins’ native states, we provide the first numerical evidence of a double-loop folding mechanism in trefoil proteins.
  3. Dynamically crosslinked polymers and their composites have tremendous potential in the development of the next round of advanced materials for aerospace, sensing, and tribological applications. These materials have self-healing properties, or the ability to recover from scratches and cuts. Applied forces can have a significant impact on the mechanical properties of non-dynamic systems. However, the impacts of forces on the self-healing ability of dynamically bonded systems are still poorly understood. Here, we used a combined computational and experimental approach to study the impact of mechanical forces on the self-healing of a model dynamic covalent crosslinked polymer system. Surprisingly, the mechanical history of the materials has a distinct impact on the observed recovery of the mechanical properties after the material is damaged. Higher compressive forces and sustained forces lead to greater self-healing, indicating that mechanical forces can promote dynamic chemistry. The atomistic details provided in molecular dynamics simulations are used to understand the mechanism with both non-covalent and dynamic covalent linkage responses to the external loading. Finite element analysis is performed to bridge the gap between experiments and simulations and to further explore the underlying mechanisms. The self-healing behavior of the crosslinked polymers is explained using reaction rate theory, with themore »applied force proposed to lower the energy barrier to bond exchange. Overall, our study provides fundamental understanding of how and why the self-healing of cross-linked polymers is affected by a compressive force and the force application time.« less
  4. Combining experimental and computational studies of nanocomposite interfaces is highly needed to gain insight into their performance. However, there are very few literature reports, combining well-controlled atomic force microscopy experiments with molecular dynamic simulations, which explore the role of polymer chemistry and assembly on interface adhesion and shear strength. In this work, we investigate graphene oxide (GO)-polymer interfaces prevalent in nanocomposites based on a nacre-like architectures. We examine the interfacial strength resulting from van der Waals and hydrogen bonding interactions by comparing the out-of-plane separation and in-plane shear deformations of GO-polyethylene glycol (PEG) and GO-polyvinyl alcohol (PVA). The investigation reveals an overall better mechanical performance for the anhydrous GO-PVA system in both out-of-plane and in-plane deformation modes, highlighting the benefits of the donor-acceptor hydrogen bond formation present in GO-PVA. Such bond formation results in interchain hydrogen bond networks leading to stronger interfaces. By contrast, PEG, a hydrogen bond acceptor only, relies primarily on van der Waals inter-chain interactions, typically resulting in weaker interactions. The study also predicts that water addition increases the adhesion of GOPEG but decreases the adhesion of GO-PVA, and slightly increases the shear strength in both systems. Furthermore, by comparing simulations and experiments, we show that themore »CHARMM force field has enough accuracy to capture the effect of polymer content, water distribution, and to provide quantitative guidance for achieving optimum interfacial properties. Therefore, the study demonstrates an effective methodology, in the Materials Genome spirit, toward the design of 2D materials-polymer nanocomposites system for applications demanding mechanical robustness.« less
  5. Abstract

    Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.