skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Hashing in External Memory
Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table implementations do not translate well into the external memory model, because they do not incorporate locality for insertions. Iacono and Pătraşu established an update/query tradeoff curve for external-hash tables: a hash table that performs insertions in O(λ/B) amortized IOs requires Ω(logλ N) expected IOs for queries, where N is the number of items that can be stored in the data structure, B is the size of a memory transfer, M is the size of memory, and λ is a tuning parameter. They provide a complicated hashing data structure, which we call the IP hash table, that meets this curve for λ that is Ω(loglogM +logM N). In this paper, we present a simpler external-memory hash table, the Bundle of Arrays Hash Table (BOA), that is optimal for a narrower range of λ. The simplicity of BOAs allows them to be readily modified to achieve the following results: A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that matches the performance of the IP hash table, while retaining some of the simplicity of the BOAs. The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious hash table. This data structure matches the optimality of BOTs and IP hash tables over the same range of λ.  more » « less
Award ID(s):
1637458
PAR ID:
10192331
Author(s) / Creator(s):
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
107
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The skip list is an elegant dictionary data structure that is com- monly deployed in RAM. A skip list with N elements supports searches, inserts, and deletes in O(logN) operations with high probability (w.h.p.) and range queries returning K elements in O(log N + K) operations w.h.p. A seemingly natural way to generalize the skip list to external memory with block size B is to “promote” with probability 1/B, rather than 1/2. However, there are practical and theoretical obsta- cles to getting the skip list to retain its efficient performance, space bounds, and high-probability guarantees. We give an external-memory skip list that achieves write- optimized bounds. That is, for 0 < ε < 1, range queries take O(logBε N + K/B) I/Os w.h.p. and insertions and deletions take O((logBε N)/B1−ε) amortized I/Os w.h.p. Our write-optimized skip list inherits the virtue of simplicity from RAM skip lists. Moreover, it matches or beats the asymptotic bounds of prior write-optimized data structures such as Bε trees or LSM trees. These data structures are deployed in high-performance databases and file systems. 
    more » « less
  2. First introduced in 1954, the linear-probing hash table is among the oldest data structures in computer science, and thanks to its unrivaled data locality, linear probing continues to be one of the fastest hash tables in practice. It is widely believed and taught, however, that linear probing should never be used at high load factors; this is because of an effect known as primary clustering which causes insertions at a load factor of 1 - 1/x to take expected time O(x2) (rather than the intuitive running time of ⇥(x)). The dangers of primary clustering, first discovered by Knuth in 1963, have now been taught to generations of computer scientists, and have influenced the design of some of the most widely used hash tables in production. We show that primary clustering is not the foregone conclusion that it is reputed to be. We demonstrate that seemingly small design decisions in how deletions are implemented have dramatic effects on the asymptotic performance of insertions: if these design decisions are made correctly, then even if a hash table operates continuously at a load factor of 1 - (1/x), the expected amortized cost per insertion/deletion is O(x). This is because the tombstones left behind by deletions can actually cause an anti-clustering effect that combats primary clustering. Interestingly, these design decisions, despite their remarkable effects, have historically been viewed as simply implementation-level engineering choices. We also present a new variant of linear probing (which we call graveyard hashing) that completely eliminates primary clustering on any sequence of operations: if, when an operation is performed, the current load factor is 1 1/x for some x, then the expected cost of the operation is O(x). Thus we can achieve the data locality of traditional linear probing without any of the disadvantages of primary clustering. One corollary is that, in the external-memory model with a data blocks of size B, graveyard hashing offers the following remarkably strong guarantee: at any load factor 1 1/x satisfying x = o(B), graveyard hashing achieves 1 + o(1) expected block transfers per operation. In contrast, past external-memory hash tables have only been able to offer a 1 + o(1) guarantee when the block size B is at least O(x2). Our results come with actionable lessons for both theoreticians and practitioners, in particular, that well- designed use of tombstones can completely change the asymptotic landscape of how the linear probing behaves (and even in workloads without deletions). 
    more » « less
  3. For nearly six decades, the central open question in the study of hash tables has been to determine the optimal achievable tradeoff curve between time and space. State-of-the-art hash tables offer the following guarantee: If keys/values are Θ(logn) bits each, then it is possible to achieve constant-time insertions/deletions/queries while wasting only O(loglogn) bits of space per key when compared to the information-theoretic optimum. Even prior to this bound being achieved, the target of O(log log n) wasted bits per key was known to be a natural end goal, and was proven to be optimal for a number of closely related problems (e.g., stable hashing, dynamic retrieval, and dynamically-resized filters). This paper shows that O(log log n) wasted bits per key is not the end of the line for hashing. In fact, for any k ∈ [log∗ n], it is possible to achieve O(k)-time insertions/deletions, O(1)-time queries, and O(log(k) n) = Ologlog···logn 􏰟 􏰞􏰝 􏰠 k wasted bits per key (all with high probability in n). This means that, each time we increase inser- tion/deletion time by an additive constant, we reduce the wasted bits per key exponentially. We further show that this tradeoff curve is the best achievable by any of a large class of hash tables, including any hash table designed using the current framework for making constant-time hash tables succinct. Our results hold not just for fixed-capacity hash tables, but also for hash tables that are dynamically resized (this is a fundamental departure from what is possible for filters); and for hash tables that store very large keys/values, each of which can be up to no(1) bits (this breaks with the conventional wisdom that larger keys/values should lead to more wasted bits per key). For very small keys/values, we are able to tighten our bounds to o(1) wasted bits per key, even when k = O(1). Building on this, we obtain a constant-time dynamic filter that uses n􏰕logε−1􏰖+nloge+o(n) bits of space for a wide choice of 
    more » « less
  4. Despite being one of the oldest data structures in computer science, hash tables continue to be the focus of a great deal of both theoretical and empirical research. A central reason for this is that many of the fundamental properties that one desires from a hash table are difficult to achieve simultaneously; thus many variants offering different trade-offs have been proposed. This article introduces Iceberg hashing, a hash table that simultaneously offers the strongest known guarantees on a large number of core properties. Iceberg hashing supports constant-time operations while improving on the state of the art for space efficiency, cache efficiency, and low failure probability. Iceberg hashing is also the first hash table to support a load factor of up to1 - o(1)while being stable, meaning that the position where an element is stored only ever changes when resizes occur. In fact, in the setting where keys are Θ (logn) bits, the space guarantees that Iceberg hashing offers, namely that it uses at most\(\log \binom{|U|}{n} + O(n \log \ \text{log} n)\)bits to storenitems from a universeU, matches a lower bound by Demaine et al. that applies to any stable hash table. Iceberg hashing introduces new general-purpose techniques for some of the most basic aspects of hash-table design. Notably, our indirection-free technique for dynamic resizing, which we call waterfall addressing, and our techniques for achieving stability and very-high probability guarantees, can be applied to any hash table that makes use of the front-yard/backyard paradigm for hash table design. 
    more » « less
  5. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N. 
    more » « less