skip to main content


Title: When seeing what's wrong makes you right: The effect of erroneous examples on 3D diagram learning
Summary

Comprehending 3D diagrams is critical for success in scientific practice and research demonstrates that understanding of 3D geology diagrams can be improved by making predictive sketches. In mathematics, explaining erroneous examples can support learning. This study combined these approaches to better understand how to effectively support 3D geologic diagram understanding. Participants generated sketches, explained erroneous example sketches, or copied and explained correct sketches. It was hypothesized that generating sketches or explaining erroneous cases would improve understanding, but an open question was whether these conditions would differ from each other. Explaining erroneous examples and sketching improved understanding whereas explaining correct sketches did not. Further, explaining erroneous examples was a more efficient strategy than sketching. These results indicate that erroneous examples can be effective for supporting 3D diagram comprehension and may be a practical substitute for some traditional sketching activities in the context of real classrooms where class time is limited.

 
more » « less
Award ID(s):
1839705 1640800
NSF-PAR ID:
10453602
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied Cognitive Psychology
Volume:
34
Issue:
4
ISSN:
0888-4080
Page Range / eLocation ID:
p. 844-861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  2. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  3. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  4. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  5. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship but also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner. 
    more » « less