skip to main content


Title: Hurricane-induced power outage risk under climate change is primarily driven by the uncertainty in projections of future hurricane frequency
Abstract

Nine in ten major outages in the US have been caused by hurricanes. Long-term outage risk is a function of climate change-triggered shifts in hurricane frequency and intensity; yet projections of both remain highly uncertain. However, outage risk models do not account for the epistemic uncertainties in physics-based hurricane projections under climate change, largely due to the extreme computational complexity. Instead they use simple probabilistic assumptions to model such uncertainties. Here, we propose a transparent and efficient framework to, for the first time, bridge the physics-based hurricane projections and intricate outage risk models. We find that uncertainty in projections of the frequency of weaker storms explains over 95% of the uncertainty in outage projections; thus, reducing this uncertainty will greatly improve outage risk management. We also show that the expected annual fraction of affected customers exhibits large variances, warranting the adoption of robust resilience investment strategies and climate-informed regulatory frameworks.

 
more » « less
Award ID(s):
1826161
NSF-PAR ID:
10192919
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A reliable metocean model, with its uncertainty quantified and its accuracy validated for conditions appropriate to assessing risk, is essential to understand the risk posed by hurricanes to offshore infrastructure such as offshore wind turbines. In this paper, three metocean models are considered, with the seastate predicted using the commercial software Mike 21, and the meteorological forcing defined by three conditions. The three conditions include (1) reanalysis data within and surrounding the hurricane, (2) predictions from the empirical Holland model within the hurricane and reanalysis data surrounding the hurricane, and (3) predictions from the empirical Holland model within the hurricane and wind‐free conditions surrounding the hurricane. The accuracy of the first metocean model is validated with (1) measurements of wind speed, wave height, wave period, and storm surge during 23 historical hurricanes from 1999 to 2012 and (2) a comparison to hindcast data from WaveWatch III, another numerical metocean model. The prediction performance of the second and third metocean models is then compared with that of the first to evaluate the impact of meteorological conditions on model predictions, as the third metocean model is necessary for risk analysis, where reanalysis data of meteorological conditions is not available. This study shows that the inconsistency between the modeling of meteorological conditions for risk assessment and for validation is influential for hurricanes with low maximum wind speeds, when model predictions are significantly better if the meteorological conditions surrounding the hurricane wind field are included. This study also shows that this inconsistency is effectively diminished when considering only events with high maximum wind speeds. Since high wind speeds are what is relevant to risk assessments, the third metocean model can be reasonably used to assess hurricane risk. Finally, the uncertainties, biases, and correlations of uncertainties in the model predictions for wind speed, wave height, wave period, and storm surge are quantified for the third metocean model, and a numerical example is constructed to illustrate the impact of including uncertainty on the assessment of risk to offshore infrastructure during hurricanes. The example demonstrates how uncertainty and correlation of uncertainty influence the size and shape of a 50‐year environmental contour of wind speed and wave height.

     
    more » « less
  2. Abstract

    The planning, design, and maintenance of stormwater infrastructure must be informed by changing rainfall patterns due to climate change. However, there is little consensus on how future climate information should be used, or how uncertainties introduced by use of different methods and datasets should be characterized or managed. These uncertainties exacerbate existing challenges to using climate information on local or municipal scales. Here we analyze major cities in the U.S., 48 of which developed climate adaptation and resilience plans. Given the prevalence of depth duration frequency (DDF) curves for planning infrastructure for rainfall, we then assessed the underlying climate information used in these 48 plans to show how DDF curves used for resilience planning and the resulting outcomes can be affected by stakeholders’ methodological choices and datasets. For rainfall extremes, many resilience plans varied by trend detection method, data preprocessing steps, and size of study area, and all used only one of the available downscaled climate projection datasets. We evaluate the implications of uncertainties across five available climate datasets and show the level of climate resilience to extreme rainfall depends on the dataset selected for each city. We produce risk matrices for a broader set of 77 U.S. cities to highlight how local resilience strategies and decisions are sensitive to the climate projection dataset used in local adaptation plans. To help overcome barriers to using climate information, we provide an open dataset of future daily rainfall values for 2-, 5-, 10-, 25-, 50-, and 100 years annual recurrence intervals for 77 cities and compare resilience outcomes across available climate datasets that each city can use for comparison and for robust resilience planning. Because of uncertainty in climate projections, our results highlight the importance of no-regret and flexible resilience strategies that can be adjusted with new climate information.

     
    more » « less
  3. Summary

    Posterior distributions for the joint projections of future temperature and precipitation trends and changes are derived by applying a Bayesian hierachical model to a rich data set of simulated climate from general circulation models. The simulations that are analysed here constitute the future projections on which the Intergovernmental Panel on Climate Change based its recent summary report on the future of our planet’s climate, albeit without any sophisticated statistical handling of the data. Here we quantify the uncertainty that is represented by the variable results of the various models and their limited ability to represent the observed climate both at global and at regional scales. We do so in a Bayesian framework, by estimating posterior distributions of the climate change signals in terms of trends or differences between future and current periods, and we fully characterize the uncertain nature of a suite of other parameters, like biases, correlation terms and model-specific precisions. Besides presenting our results in terms of posterior distributions of the climate signals, we offer as an alternative representation of the uncertainties in climate change projections the use of the posterior predictive distribution of a new model’s projections. The results from our analysis can find straightforward applications in impact studies, which necessitate not only best guesses but also a full representation of the uncertainty in climate change projections. For water resource and crop models, for example, it is vital to use joint projections of temperature and precipitation to represent the characteristics of future climate best, and our statistical analysis delivers just that.

     
    more » « less
  4. Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions. 
    more » « less
  5. Abstract

    Climate change has lengthened wildfire seasons and transformed fire regimes throughout the world. Thus, capturing fuel and fire dynamics is critical for projecting Earth system processes in warmer and drier future. Recent advances in fire regime modeling have linked land surface models with fire behavior models. Such models often rely on fine surface fuels to drive fire behavior and effects, and while many models can simulate processes that control how these fuels change through time (i.e., fine fuel accumulation), fuel loading estimates remain highly uncertain, largely due to uncertainties in the algorithms controlling decomposition. Uncertainties are often amplified in climate change forecasts when initial conditions and feedbacks are not well represented. The goal of this review is to highlight fine fuel decomposition as a key uncertainty in model systems. We review the current understanding of mechanisms controlling decomposition, describe how they are incorporated into models, and evaluate the uncertainties associated with different approaches. We also use three state‐of‐the‐art land surface fire regime models to demonstrate the sensitivity of decomposition and subsequent wildfire projections to both parameter and model structure uncertainty and show that sensitivity can increase substantially under future climate warming. Given that many of the governing decomposition equations are based on individual case studies from a single location, and because key parameters are often hard coded, critical uncertainties are currently ignored. It is essential to be transparent about these uncertainties as the domain of land surface models is expanded to include the evaluation of future wildfire regimes.

     
    more » « less