This work focuses on the synthesis of supported Rh materials and study of their efficacy as pre‐catalysts for the oxidative alkenylation of arenes. Rhodium particles supported on silica (Rh/SiO2; ∼3.6 wt% Rh) and on nitrogen‐doped carbon (Rh/NC; ∼1.0 wt% Rh) are synthesized and tested. Heating mixtures of Rh/SiO2or Rh/NC with benzene and ethylene or α‐olefins and CuX2{X=OPiv (trimethylacetate) or OHex (2‐ethyl hexanoate)} to 150 °C results in the production of alkenyl arenes. When using Rh/SiO2or Rh/NC as catalyst precursor, the conversion of benzene and propylene or toluene and 1‐pentene yields a ratio of anti‐Markovnikov to Markovnikov products that is nearly identical to the same ratios as the molecular catalyst precursor [Rh(μ‐OAc)(
Computational studies revealed that dirhodium tetrakis(1,2,2‐triarylcyclopropanecarboxylate) (Rh2(TPCP)4) catalysts adopt distinctive high symmetry orientations, which are dependent on the nature of the aryl substitution pattern. The parent catalyst, Rh2(TPCP)4, and those with a
- Award ID(s):
- 1700982
- PAR ID:
- 10192954
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 1867-3880
- Page Range / eLocation ID:
- p. 174-179
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract η 2‐C2H4)2]2. These results and other observations are consistent with the formation of active catalysts by leaching of soluble Rh from the supported Rh materials. -
Abstract Transition metal oxides of the 4
d and 5d block have recently become the targets of materials discovery, largely due to their strong spin–orbit coupling that can generate exotic magnetic and electronic states. Here, we report the high-pressure synthesis of Lu2Rh2O7, a new cubic pyrochlore oxide based on 4d 5Rh4+, and characterizations via thermodynamic, electrical transport, and muon spin relaxation measurements. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetic contribution, while heat capacity shows an enhanced Sommerfeld coefficient,γ = 21.8(1) mJ/mol-Rh K2. Muon spin relaxation measurements confirm that Lu2Rh2O7remains paramagnetic down to 2 K. Taken in combination, these three measurements suggest that Lu2Rh2O7is a correlated paramagnetic metal with a Wilson ratio ofR W = 2.5. However, electric transport measurements present a striking contradiction as the resistivity of Lu2Rh2O7is observed to monotonically increase with decreasing temperature, indicative of a nonmetallic state. Furthermore, although the magnitude of the resistivity is that of a semiconductor, the temperature dependence does not obey any conventional form. Thus, we propose that Lu2Rh2O7may belong to the same novel class of non-Fermi liquids as the nonmetallic metal FeCrAs. -
Abstract We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IVO4and YMn3IVO4complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen‐evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin‐state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IVO4complexes and variants with protonated oxo moieties need not be
S =9/2. Desymmetrization of thepseudo ‐C 3‐symmetric Ca(Y)Mn3IVO4core leads to a lowerS =5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and anS =3/2 spin ground state is observed in CaMn3IVO3(OH). Our studies complement the observation that the interconversion between the low‐spin and high‐spin forms of the S2state is pH‐dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin‐state changes. -
Abstract We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IVO4and YMn3IVO4complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen‐evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin‐state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IVO4complexes and variants with protonated oxo moieties need not be
S =9/2. Desymmetrization of thepseudo ‐C 3‐symmetric Ca(Y)Mn3IVO4core leads to a lowerS =5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and anS =3/2 spin ground state is observed in CaMn3IVO3(OH). Our studies complement the observation that the interconversion between the low‐spin and high‐spin forms of the S2state is pH‐dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin‐state changes. -
The novel bench-stable
N -quaternized keteneN ,O -acetal, C16H19N2O+·CF3O3S−, was synthesized and its structure determined. The title compound is a rare example of a pyridinium ketene hemiaminal for which a crystal structure has been determined, joining the 2-chloro-1-(1-ethyoxyethenyl)pyridin-1-ium trifluoromethanesulfonate salt from which it was synthesized. The cationic species of the title compound can be defined by three individually planar fragments assembling into a non-coplanar cation. The phenyl substituent extending from the amino nitrogen atom and the ethyoxyvinyl substituent extending from the pyridine N atom are oriented on the same side of the molecule and maintain the closest coplanar relationship of the three fragments. Supramolecular interactions are dominated by C—H...O interactions from the cation to the SO3side of the trifluoromethanesulfonate anion, forming a two-dimensional substructure.