skip to main content

Title: Lymph Liquid Biopsy for Detection of Cancer Stem Cells

Collection of a blood sample defined by the term “blood liquid biopsy” is commonly used to detect diagnostic, prognostic, and therapeutic decision‐making markers of metastatic tumors including circulating tumor cells (CTCs). Many tumors also release CTCs and other markers into lymph fluid, but the utility of lymphatic markers largely remains unexplored. Here, we introduce lymph liquid biopsy through collection of peripheral (afferent) and central (thoracic duct [TD]) lymph samples and demonstrates its feasibility for detection of stem‐like CTCs potentially responsible for metastasis development and tumor relapse. Stemness of lymphatic CTCs (L‐CTCs) was determined by spheroid‐forming assay in vitro. Simultaneously, we tested blood CTCs by conventional blood liquid biopsy, and monitored the primary tumor size, early metastasis in a sentinel lymph node (SLN) and distant metastasis in lungs. Using a mouse model at early melanoma stage with no distant metastasis, we identified stem‐like L‐CTCs in lymph samples from afferent lymphatic vessels. Since these vessels transport cells from the primary tumor to SLN, our finding emphasizes the significance of the lymphatic pathway in development of SLN metastasis. Surprisingly, in pre‐metastatic disease, stem‐like L‐CTCs were detected in lymph samples from the TD, which directly empties lymph into blood circulation. This suggests a new contribution of the lymphatic system to initiation of distant metastasis. Integration of lymph and blood liquid biopsies demonstrated that all mice with early melanoma had stem‐like CTCs in at least one of three samples (afferent lymph, TD lymph, and blood). At the stage of distant metastasis, spheroid‐forming L‐CTCs were detected in TD lymph, but not in afferent lymph. Altogether, our results demonstrated that lymph liquid biopsy and testing L‐CTCs holds promise for diagnosis and prognosis of early metastasis. © 2020 International Society for Advancement of Cytometry

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Cytometry Part A
Page Range / eLocation ID:
p. 496-502
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real‐time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two‐color fluorescence flow cytometry (FFC) using breast cancer cells MDA‐MB‐231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin‐V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real‐time monitoring of antitumor drug efficiency is discussed. © 2019 International Society for Advancement of Cytometry

    more » « less
  2. Abstract

    Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.

    more » « less
  3. Profiling circulating tumour cells (CTCs) in cancer patients' blood samples is critical to understand the complex and dynamic nature of metastasis. This task is challenged by the fact that CTCs are not only extremely rare in circulation but also highly heterogeneous in their molecular programs and cellular functions. Here we report a combinational approach for the simultaneous biochemical and functional phenotyping of patient-derived CTCs, using an integrated inertial ferrohydrodynamic cell separation (i 2 FCS) method and a single-cell microfluidic migration assay. This combinatorial approach offers unique capability to profile CTCs on the basis of their surface expression and migratory characteristics. We achieve this using the i 2 FCS method that successfully processes whole blood samples in a tumor cell marker and size agnostic manner. The i 2 FCS method enables an ultrahigh blood sample processing throughput of up to 2 × 10 5 cells s −1 with a blood sample flow rate of 60 mL h −1 . Its short processing time (10 minutes for a 10 mL sample), together with a close-to-complete CTC recovery (99.70% recovery rate) and a low WBC contamination (4.07-log depletion rate by removing 99.992% of leukocytes), results in adequate and functional CTCs for subsequent studies in the single-cell migration device. For the first time, we employ this new approach to query CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers and migration properties, revealing the dynamic phenotypes and the existence of a high-motility subpopulation of CTCs in blood samples from metastatic lung cancer patients. This method could be adopted to study the biological and clinical value of invasive CTC phenotypes. 
    more » « less
  4. null (Ed.)
    We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment. 
    more » « less
  5. Abstract

    Circulating tumor cells (CTCs) are shed from primary tumors, circulate in the bloodstream and are capable of initiating metastasis at distant anatomical sites. The detection and molecular characterization of CTCs are pivotal for early-stage cancer diagnosis and prognosis. Recently, microfluidic technology has achieved significant progress in the separation of cells from complex and heterogeneous mixtures for many biomedical applications. Conventional microfluidic platforms exploit the difference in size between the particles to achieve separation, which makes them ineffective for sorting overlapping-sized CTCs. To address this issue, we propose a method using a spiral channel for label-free, and high throughput separation of CTCs coupling Dielectrophoresis (DEP) with inertial microfluidics. A numerical model has been developed to investigate the separation effectiveness of the device over a range of electrical voltage and flow rates. The presented channel is shown to effectively isolate similar-sized CTCs from the white blood cells (WBCs) in a single-stage separation process. Subsequently, optimum working parameters to enhance separation efficiency have been proposed. The hybrid microfluidic device can provide valuable insight into the development of a robust, inexpensive, and efficient platform for cell separation with reduced analysis time for future cancer research and treatment.

    more » « less