Sensitivity of pair statistics on pair potentials in many-body systems
- Award ID(s):
- 1701843
- PAR ID:
- 10193654
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 153
- Issue:
- 12
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- Article No. 124106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.more » « less
-
We present the design of a pair spectrometer for use at FACET-II, where there is a need for spectroscopy of photons having energies up to 10 GeV. Incoming gammas are converted to high-energy positron-electron pairs, which are then subsequently analyzed in a dipole magnet. These charged particles are then recorded in arrays of acrylic Cherenkov counters, which are significantly less sensitive to background x-rays than scintillator counters in this case. To reconstruct energies of single high-energy photons, the spectrometer has a sensitivity to single positron-electron pairs. Even in this single-photon limit, there is always some low-energy continuum present, so spectral deconvolution is not trivial, for which we demonstrate a maximum likelihood reconstruction. Finally, end-to-end simulations of experimental scenarios, together with anticipated backgrounds, are presented.more » « less
An official website of the United States government
