skip to main content

Title: Constraints on HD 113337 fundamental parameters and planetary system: Combining long-base visible interferometry, disc imaging, and high-contrast imaging
Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore. Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques. Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We took advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis. Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R ⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7 −2 +4 M Jup for HD 113337 b (confirmed companion) and ~16 −3 +10 M Jup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations.  more » « less
Award ID(s):
1715788 1636624
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ∼10 au. Long-term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ∼50−100 μarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7$ ^{+1.2}_{-1.0} $ M Jup and an orbital separation of 3.53$ ^{+0.08}_{-0.06} $ au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a “hybrid sequence” (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2−4 au. 
    more » « less

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

    more » « less
  3. Abstract

    We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date.

    more » « less
  4. Abstract

    We present the direct-imaging discovery of a giant planet orbiting the young star AF Lep, a 1.2Mmember of the 24 ± 3 MyrβPic moving group. AF Lep was observed as part of our ongoing high-contrast imaging program targeting stars with astrometric accelerations between Hipparcos and Gaia that indicate the presence of substellar companions. Keck/NIRC2 observations inLwith the vector vortex coronagraph reveal a point source, AF Lep b, at ≈340 mas, which exhibits orbital motion at the 6σlevel over the course of 13 months. A joint orbit fit yields precise constraints on the planet’s dynamical mass of3.20.6+0.7MJup, semimajor axis of8.41.3+1.1au, and eccentricity of0.240.15+0.27. AF Lep hosts a debris disk located at ∼50 au, but it is unlikely to be sculpted by AF Lep b, implying there may be additional planets in the system at wider separations. The stellar inclination (i*=549+11°) and orbital inclination (io=5012+9°) are in good agreement, which is consistent with the system having spin–orbit alignment. AF Lep b is the lowest-mass imaged planet with a dynamical mass measurement and highlights the promise of using astrometric accelerations as a tool to find and characterize long-period planets.

    more » « less

    Based on high-contrast images obtained with the Gemini Planet Imager (GPI), we report the discovery of two point-like sources at angular separations ρ ∼ 0.18 and 0.80 arcsec from the stars HD 29992 and HD 196385. A combined analysis of the new GPI observations and images from the literature indicates that the source close to HD 29992 could be a companion to the star. Concerning HD 196385, the small number of contaminants (∼0.5) suggests that the detected source may be gravitationally bound to the star. For both systems, we discarded the presence of other potential companions with m > 75 MJup at ρ ∼ 0.3–1.3 arcsec. From stellar model atmospheres and low-resolution GPI spectra, we derive masses of ∼0.2–0.3 M⊙ for these sources. Using a Markov-chain Monte Carlo approach, we performed a joint fit of the new astrometry measurements and published radial velocity data to characterize the possible orbits. For HD 196385B, the median dynamic mass is in agreement with that derived from model atmospheres, whilst for HD 29992B the orbital fit favours masses close to the brown dwarf regime (∼0.08 M⊙). HD 29992 and HD 196385 might be two new binary systems with M-type stellar companions. However, new high angular resolution images would help to confirm definitively whether the detected sources are gravitationally bound to their respective stars, and permit tighter constraints on the orbital parameters of both systems.

    more » « less