skip to main content


Title: Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope

Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.

 
more » « less
Award ID(s):
1807106
NSF-PAR ID:
10194086
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
20
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 30210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While two-photon fluorescence microscopy is a powerful platform for the study of functional dynamics in living cells and tissues, the bulk motion inherent to these applications causes distortions. We have designed a motion tracking module based on spectral domain optical coherence tomography which compliments a laser scanning two-photon microscope with real-time corrective feedback. The module can be added to fluorescent imaging microscopes using a single dichroic and without additional contrast agents. We demonstrate that the system can track lateral displacements as large as 10μm at 5 Hz with latency under 14 ms and propose a scheme to extend the system to 3D correction with the addition of a remote focusing module. We also propose several ways to improve the module’s performance by reducing the feedback latency. We anticipate that this design can be adapted to other imaging modalities, enabling the study of samples subject to motion artifacts at higher resolution.

     
    more » « less
  2. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms.

     
    more » « less
  3. Abstract

    Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.

     
    more » « less
  4. Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.

     
    more » « less
  5. 3D phase imaging recovers an object’s volumetric refractive index from intensity and/or holographic measurements. Partially coherent methods, such as illumination-based differential phase contrast (DPC), are particularly simple to implement in a commercial brightfield microscope. 3D DPC acquires images at multiple focus positions and with different illumination source patterns in order to reconstruct 3D refractive index. Here, we present a practical extension of the 3D DPC method that does not require a precise motion stage for scanning the focus and uses optimized illumination patterns for improved performance. The user scans the focus by hand, using the microscope’s focus knob, and the algorithm self-calibrates the axial position to solve for the 3D refractive index of the sample through a computational inverse problem. We further show that the illumination patterns can be optimized by an end-to-end learning procedure. Combining these two, we demonstrate improved 3D DPC with a commercial microscope whose only hardware modification is LED array illumination.

     
    more » « less