Abstract The removal of heavy metal contaminants from water is important for public health, and recently many two-dimensional (2D) materials with high specific surface areas are being studied as promising new active components in water purification. In particular, 2D MoS2nanosheets have been used for the removal of various heavy metals, but usually in either in complex geometries and composites, or in the chemically exfoliated metallic 1T-MoS2phase. However, the interaction of heavy metals dissolved in water with unmodified semiconducting 2H-MoS2is not well studied. In this paper, we report a detailed fundamental investigation of how Pb2+ions interact with 2H-MoS2. We observe small solid clusters that form on the MoS2surfaces after exposing them to Pb(NO3)2aqueous solutions as shown by atomic force microscopy and transmission electron microscopy, and for liquid phase exfoliated MoS2we observe the nanosheets precipitating out of dispersion along with insoluble solid granules. We use a combination of x-ray photoelectron spectroscopy and x-ray diffraction to identify these solid clusters and granules as primarily PbSO4with some PbMoO4. We put forth an interaction mechanism that involves MoS2defects acting as initiation sites for the partial dissolution in aqueous oxygenated conditions which produces MoO42−and SO42−ions to form the solids with Pb2+. These results are an important contribution to our fundamental understanding of how MoS2interacts with metal ions and will influence further efforts to exploit MoS2for water remediation applications.
more »
« less
Multi-pulse laser-induced bubble formation and nanoparticle aggregation using MoS2 nanoparticles
Abstract Understanding of how particles and light interact in a liquid environment is vital for optical and biological applications. MoS2has been shown to enhance nonlinear optical phenomena due to the presence of a direct excitonic resonance. Its use in biological applications is predicated on knowledge of how MoS2interacts with ultrafast (< 1 ps) pulses. In this experiment, the interaction between two femtosecond pulses and MoS2nanoparticles suspended in liquid is studied. We found that the laser pulses induce bubble formation on the surface of a nanoparticle and a nanoparticle aggregate then forms on the surface of the trapped bubble. The processes of formation of the bubble and the nanoparticle aggregation are intertwined.
more »
« less
- Award ID(s):
- 1905043
- PAR ID:
- 10194234
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%–60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.more » « less
-
Abstract The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation.more » « less
-
Abstract Surface functionalization of semiconductor nanoparticles plays a significant role in the manipulation of the nanoparticle physicochemical properties and diverse applications. Conventional points of anchor involve mercapto, carboxyl and phenol moieties, forming largely nonconjugated interfacial linkages. In this personal account, we summarize recent progress in surface functionalization of semiconductor nanoparticles with olefin and acetylene derivatives, where the formation of conjugated interfacial bonds leads to ready manipulation of the nanoparticle optical and electronic properties, by using Si and TiO2nanoparticles as the illustrating examples. Finally, a perspective is included where the promises and challenges of structural engineering of semiconductor nanoparicles are highlighted.more » « less
-
The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions. In this paper, we extend the atomistic simulations to short (hundreds of picoseconds to nanoseconds) laser pulses and focus our attention on the effect of the pulse duration on the mechanisms responsible for the generation of nanoparticles at the initial dynamic stage of laser ablation. Three distinct nanoparticle generation mechanisms operating at different stages of the ablation process and in different parts of the emerging cavitation bubble are identified in the simulations. These mechanisms are (1) the formation of a thin transient metal layer at the interface between the ablation plume and water environment followed by its decomposition into large molten nanoparticles, (2) the nucleation, growth, and rapid cooling/solidification of small nanoparticles at the very front of the emerging cavitation bubble, above the transient interfacial metal layer, and (3) the spinodal decomposition of a part of the ablation plume located below the transient interfacial layer, leading to the formation of a large population of nanoparticles growing in a high-temperature environment through inter-particle collisions and coalescence. The coexistence of the three distinct mechanisms of the nanoparticle formation at the initial stage of the ablation process can be related to the broad nanoparticle size distributions commonly observed in nanosecond PLAL experiments. The strong dependence of the nanoparticle cooling and solidification rates on the location within the low-density metal–water mixing region has important implications for the long-term evolution of the nanoparticle size distribution, as well as for the ability to quench the nanoparticle growth or dope them by adding surface-active agents or doping elements to the liquid environment.more » « less
An official website of the United States government
