skip to main content


Title: Myh11+ microvascular mural cells and derived mesenchymal stem cells promote retinal fibrosis
Abstract

Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFβR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFβR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFβR and non-TGFβR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.

 
more » « less
NSF-PAR ID:
10194237
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment in vitro . Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed in vivo during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell–ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue in vitro and highlights the need to incorporate multiple factors that work together synergistically in vivo into models of lung biology of health and disease. 
    more » « less
  2. Abstract

    The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell–matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell–cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell–cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.

     
    more » « less
  3. Abstract

    Controlled differentiation of mesenchymal stem cells (MSCs) into the chondrogenic lineage is crucial for in vitro generation of neocartilage, yet achieving it remains challenging. Traditional protocols for MSC differentiation using exogenous inductive molecules, such as transforming growth factor-β, fall short in meeting the needs of clinical applications because they yield differentiated cells that exhibit hypertrophic characteristics and subsequently facilitate endochondral bone formation. The objective of the current study was to deliver endogenous inductive factors from juvenile articular chondrocytes to bone marrow-derived MSCs to drive MSC chondrogenic differentiation through cocultivation of the two cell types in the absence of direct physical contact and exogenous stimulators. An initial chondrocyte/MSC ratio of 63:1 was identified as the appropriate proportion of the two cell populations to ensure that coculture-driven MSC-differentiated (CDMD) cells replicated the cellular morphology, behavior, and phenotype of articular chondrocytes. In a three-dimensional agarose system, CDMD cells were further shown to develop into robust neocartilage structurally and mechanically stronger than chondrocyte-laden constructs and with reduced hypertrophic potential. Although MSCs tended to lose the ability to express CD44, an important regulator in cartilage biology, during the coculture induction, CDMD cells regained this function in the three-dimensional tissue cultivation. The present work establishes a chondrocyte/MSC coculture model that serves as a template to better understand chondrocyte-driven MSC differentiation and provides insights for improved strategies to develop clinically relevant cartilage tissue replacements.

     
    more » « less
  4. Abstract

    Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell–cell and cell‐matrix interactions. Significant post‐myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly‐oriented, type‐I collagen nanofiber (dia= 789 ± 162 nm) mats on the cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cells (BM‐MSC) spheroids, in the presence or absence of 10 μM 5‐azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time‐dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza‐treatment. Aza‐exposure improved connexin‐4 expression and sustained sarcomeric α‐actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza‐exposure. Although further quantitativein vitroandin vivostudies are needed to establish the clinical applicability of such stem‐cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM‐MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3303–3312, 2018.

     
    more » « less
  5. Abstract

    The anti‐malaria drug artesunate and other chemical analogs of artemisinin have demonstrated cytostatic and cytotoxic effects in bacterial and cancer cells. Artemisinin‐derived compounds have also been demonstrated to attenuate fibrosis in preclinical animal models, but the mechanisms by which this inhibition occurs are not well‐understood. We investigated the effects of artesunate on the emergence of the myofibroblast, which is causally implicated in pro‐fibrotic pathologies. CRL‐2097 human dermal fibroblasts were analyzed for protein and transcript expression after treatment with artesunate to analyze fibroblast activation. Proliferation and apoptosis were also evaluated following treatment with artesunate in this cell line. Treatment of human dermal fibroblasts with artesunate antagonized fibroblast activation and pro‐fibrotic extracellular matrix (ECM) deposition, both at basal culture conditions and when cultured in the presence of exogenous transforming growth factor‐β1 (TGF‐β1), a major pro‐fibrotic cytokine. Artesunate‐treated fibroblasts also demonstrated decreased proliferation and increased apoptosis. Transcript analysis by quantitative real‐time polymerase chain reaction demonstrated that artesunate downregulated expression of pro‐fibrotic genes including canonical myofibroblast markers, ECM genes, and several TGF‐β receptors and ligands, and upregulated expression of cell cycle inhibitors and matrix‐metalloproteinases. Together, these data demonstrate that artesunate antagonizes fibroblast activation and decreases expression of pro‐fibrotic genes, while also promoting myofibroblast apoptosis, suggesting that these mechanisms may be responsible in part for the anti‐fibrotic effects of artesunate described previously.

     
    more » « less