skip to main content

Title: Design and analysis of extended depth of focus metalenses for achromatic computational imaging

Metasurface optics have demonstrated vast potential for implementing traditional optical components in an ultracompact and lightweight form factor. Metasurfaces, however, suffer from severe chromatic aberrations, posing serious limitations on their practical use. Existing approaches for circumventing this involving dispersion engineering are limited to small apertures and often entail multiple scatterers per unit cell with small feature sizes. Here, we present an alternative technique to mitigate chromatic aberration and demonstrate high-quality, full-color imaging using extended depth of focus (EDOF) metalenses and computational reconstruction. Previous EDOF metalenses have relied on cubic phase masks, where the image quality suffers from asymmetric artefacts. Here we demonstrate the use of rotationally symmetric masks, including logarithmic-aspherical, and shifted axicon masks, to mitigate this problem. Our work will inspire further development in achromatic metalenses beyond dispersion engineering and hybrid optical–digital metasurface systems.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Page Range / eLocation ID:
Article No. 1613
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metasurfaces have been studied and widely applied to optical systems. A metasurface-based flat lens (metalens) holds promise in wave-front engineering for multiple applications. The metalens has become a breakthrough technology for miniaturized optical system development, due to its outstanding characteristics, such as ultrathinness and cost-effectiveness. Compared to conventional macro- or meso-scale optics manufacturing methods, the micro-machining process for metalenses is relatively straightforward and more suitable for mass production. Due to their remarkable abilities and superior optical performance, metalenses in refractive or diffractive mode could potentially replace traditional optics. In this review, we give a brief overview of the most recent studies on metalenses and their applications with a specific focus on miniaturized optical imaging and sensing systems. We discuss approaches for overcoming technical challenges in the bio-optics field, including a large field of view (FOV), chromatic aberration, and high-resolution imaging. 
    more » « less
  2. Abstract

    Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length overλ = 1200–1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.

    more » « less
  3. Abstract

    Optical metasurfaces have become versatile platforms for manipulating the phase, amplitude, and polarization of light. A platform for achieving independent control over each of these properties, however, remains elusive due to the limited engineering space available when using a single-layer metasurface. For instance, multiwavelength metasurfaces suffer from performance limitations due to space filling constraints, while control over phase and amplitude can be achieved, but only for a single polarization. Here, we explore bilayer dielectric metasurfaces to expand the design space for metaoptics. The ability to independently control the geometry and function of each layer enables the development of multifunctional metaoptics in which two or more optical properties are independently designed. As a proof of concept, we demonstrate multiwavelength holograms, multiwavelength waveplates, and polarization-insensitive 3D holograms based on phase and amplitude masks. The proposed architecture opens a new avenue for designing complex flat optics with a wide variety of functionalities.

    more » « less
  4. Metalenses have shown great promise in their ability to function as ultracompact optical systems for focusing and imaging. Remarkably, several designs have been recently demonstrated that operate over a large range of frequencies with minimized chromatic aberrations, potentially paving the way for ultrathin achromatic optics. Here, we derive fundamental bandwidth limits that apply to broadband optical metalenses regardless of their implementation. Specifically, we discuss how the product between achievable time delay and bandwidth is limited in any time-invariant system, and we apply well-established bounds on this product to a general focusing system. We then show that all metalenses designed thus far obey the appropriate bandwidth limit. The derived physical bounds provide a useful metric to compare and assess the performance of different devices, and they offer fundamental insight into how to design better broadband metalenses.

    more » « less
  5. Abstract

    Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.

    more » « less