skip to main content


Title: Using gross ecosystem product (GEP) to value nature in decision making
Gross domestic product (GDP) summarizes a vast amount of economic information in a single monetary metric that is widely used by decision makers around the world. However, GDP fails to capture fully the contributions of nature to economic activity and human well-being. To address this critical omission, we develop a measure of gross ecosystem product (GEP) that summarizes the value of ecosystem services in a single monetary metric. We illustrate the measurement of GEP through an application to the Chinese province of Qinghai, showing that the approach is tractable using available data. Known as the “water tower of Asia,” Qinghai is the source of the Mekong, Yangtze, and Yellow Rivers, and indeed, we find that water-related ecosystem services make up nearly two-thirds of the value of GEP for Qinghai. Importantly most of these benefits accrue downstream. In Qinghai, GEP was greater than GDP in 2000 and three-fourths as large as GDP in 2015 as its market economy grew. Large-scale investment in restoration resulted in improvements in the flows of ecosystem services measured in GEP (127.5%) over this period. Going forward, China is using GEP in decision making in multiple ways, as part of a transformation to inclusive, green growth. This includes investing in conservation of ecosystem assets to secure provision of ecosystem services through transregional compensation payments.  more » « less
Award ID(s):
1924111
NSF-PAR ID:
10194535
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
25
ISSN:
0027-8424
Page Range / eLocation ID:
14593 to 14601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large rivers are the main arteries for transportation of carbon to the ocean; yet, how hydrology and anthropogenic disturbances may change the composition and export of dissolved organic matter along large river continuums is largely unknown. The Yangtze River has a watershed area of 1.80 × 106 km2. It originates from the Qinghai‐Tibet Plateau and flows 6300 km eastward through the center of China. We collected samples (n= 271) along the river continuum and analyzed weekly samples at the most downstream situated gauging station in 2017–2018 and gathered long‐term (2006–2018) water quality data. We found higher gross domestic product, population density, and urban and agricultural land use downstream than upstream of the Three Gorges Dam, coinciding with higher dissolved organic carbon (DOC), UV absorption (a254), specific ultraviolet absorbance (SUVA254), parallel factor analysis‐derived C1–C5, aliphatic compounds, and lowera250:a365and spectral slope (S275–295). Chemical oxygen demand, humic‐like C1–C2 and C6, and protein‐like C4 and C7 increased, while dissolved oxygen and ammonium decreased with increasing discharge at most of the sites studied, including the intensively monitored downstream site. The annual DOC fluxes were ca. 1.5–1.8 Tg yr−1, and 12–18% was biodegradable in a 28‐d bio‐incubation. Our results highlight that urbanization and stormwater periods enhanced the export of both terrestrial organic‐rich substances and household effluents from nearshore residential areas. Our study emphasizes the continued need to protect the Yangtze River watershed as increased organic carbon loading or altered composition and bio‐lability may change the ecosystem function and carbon cycling.

     
    more » « less
  2. Urban spatial structure is a critical component of urban planning and development, and among the different urban spatial structure strategies, ‘polycentric mega-city region (PMR)’ has recently received great research and public policy interest in China. However, there is a lack of systematic understanding on the spatiality of PMR from a pluralistic perspective. This study aims to fill this gap by investigating the spatiality of PMR in the Yangtze River Delta Urban Agglomeration (YRDUA) using city-level data on gross domestic product (GDP), population share, and urban income growth for the period 2000–2013. The results reveal that economically, the YRDUA is experiencing greater polycentricity, but in terms of social welfare, the region manifests growing monocentricity. We further find that the triple transition framework (marketization, urbanization, and decentralization) can greatly explain the observed patterns. Although the economic goals are accomplished with better spatial linkages and early economic development policies, inequality in spatial distribution of public services and the continuing legacy of central planning remain barriers for the YRDUA to emerge as a successful PMR. The results of this research offer meaningful insights on the impact of polycentric policies in the YRDUA and support policymakers in the implementation of appropriate urban spatial development strategies. 
    more » « less
  3. Human activities have led to 1–2% of coastal wetlands lost per year globally, with subsequent losses in ecosystem services such as nutrient filtering and carbon sequestration. Wetland construction is used to mitigate losses of marsh cover and services resulting from human impacts in coastal areas. Though marsh structure can recover relatively quickly (i.e., <10 years) after construction, there are often long‐term lags in the recovery of ecosystem functions in constructed marshes. We conducted a year‐long study comparing seasonal plant productivity, ecosystem respiration (), denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) between two 33‐year‐old constructed marshes (CON‐1, CON‐2) and a nearby natural reference marsh (NAT). We found that CON‐1 and CON‐2 were structurally similar to NAT (i.e., plant aboveground and belowground biomass did not differ). Likewise, gross ecosystem productivity (GEP),, and net ecosystem exchange (NEE) were similar across all marshes. Further, DNRA and denitrification were similar across marshes, with the exception of greater denitrification rates at CON‐2 than at the other two sites. While pore‐water ammonium concentrations were similar across all marshes, organic matter (OM) content, pore‐water phosphate, nitrate + nitrite, and hydrogen sulfide concentrations were greater in NAT than CON‐1 and CON‐2. Collectively, this work suggests that current marsh construction practices could be a suitable tool for recovering plant structure and some ecosystem functions. However, the lag in recovery of pore‐water nutrient stocks and OM content also suggests that some biogeochemical functions may take longer than a few decades to fully recover in constructed marshes.

     
    more » « less
  4. Abstract The Amazon biome is being pushed by unsustainable economic drivers towards an ecological tipping point where restoration to its previous state may no longer be possible. This degradation is the result of self-reinforcing interactions between deforestation, climate change and fire. We assess the economic, natural capital and ecosystem services impacts and trade-offs of scenarios representing movement towards an Amazon tipping point and strategies to avert one using the Integrated Economic-Environmental Modeling (IEEM) Platform linked with spatial land use-land cover change and ecosystem services modeling (IEEM + ESM). Our approach provides the first approximation of the economic, natural capital and ecosystem services impacts of a tipping point, and evidence to build the economic case for strategies to avert it. For the five Amazon focal countries, namely, Brazil, Peru, Colombia, Bolivia and Ecuador, we find that a tipping point would create economic losses of US$256.6 billion in cumulative gross domestic product by 2050. Policies that would contribute to averting a tipping point, including strongly reducing deforestation, investing in intensifying agriculture in cleared lands, climate-adapted agriculture and improving fire management, would generate approximately US$339.3 billion in additional wealth and a return on investment of US$29.5 billion. Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent and replicable manner can support the design of regional development strategies for the Amazon biome, build the business case for action and catalyze global cooperation and financing to enable policy implementation. 
    more » « less
  5. Abstract There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy (ORE) developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g. bottom temperature), biological (e.g. net primary production) indicators and anthropogenic marine use (i.e. fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to ORE deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare. 
    more » « less